跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐嘉佑
研究生(外文):Chia-Yu Hsu
論文名稱:適應性模糊控制器應用於混沌系統與無刷直流馬達之設計
論文名稱(外文):Adaptive Fuzzy Logic Controller Design for Chaotic Systems and BLDC Motor
指導教授:林志民林志民引用關係
指導教授(外文):Chih-Min Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:90
中文關鍵詞:適應性糢糊控制模糊滑動控制混沌系統無刷直流馬達
外文關鍵詞:AdaptiveFuzzy ControlFuzzy Sliding-mode ControlChaotic systemBLDC Motor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分別針對混沌系統之同步控制與無刷直流馬達之定位控制設計了適應性模糊控制器與適應性模糊滑動控制器。由於混沌系統的變化是不可預測的,因此此類系統的同步成為工程界的一大課題;另一方面,無刷直流馬達已被廣泛的運用在生活中,所以如何精準的控制馬達也變成非常重要。本論文所提出的控制器包含了一個模糊邏輯控制器以及一個補償控制器,其中模糊邏輯控制器被用來近似一理想控制器,而補償控制器則是用來抵消近似誤差所帶來的影響並且確保系統之穩定。為了能夠有效的消除近似誤差,在此分別提出了具有估測近似誤差邊界能力的滑動型補償控制器、模糊邏輯補償控制器以及雙曲正切補償控制器。此外,為了提升控制初期的追蹤效能,模糊邏輯控制器的輸出權重被設計成由積分項與比例項所組成。最後,由混沌系統的同步模擬及無刷直流馬達的實作追蹤控制結果可以看出,所提出的控制器均可以達到使系統穩定且擁有良好控制效能的目標。
In this thesis, synchronization of nonlinear chaotic systems and position control of BLDC motor are achieved by proposed adaptive fuzzy controller and adaptive fuzzy sliding-mode controller, respectively. The behavior of chaotic systems is unpredictable, so how to synchronize this kind of systems becomes a great deal in engineering community. The precise control of these nonlinear motors becomes very important because the brushless DC (BLDC) motors are applied widely nowadays. The proposed controllers are composed of a fuzzy logic controller which is utilized to approximate an ideal controller and a compensator which is used to eliminate the approximation error and guarantee the stability of system. To eliminate the approximation error properly, three kinds of compensators have been designed which are sliding-mode type compensator with bound estimation, fuzzy logic compensator and hyperbolic tangent compensator. Furthermore, the output weights of fuzzy logic controller are designed to consist of a proportional term and an integral term. Consequently, the tracking performance and converge of parameters can be improved. From the simulation results of synchronization and practical experimental results of BLDC motor, the system stability and favorable control performance can be achieved by the proposed adaptive fuzzy logic control systems.
書名頁 i
論文口試委員審定書 ii
授權書 iii
摘要 iv
Abstract v
致謝 vii
Contents viii
List of Tables x
List of Figures xi
Nomenclature xiv
Chapter 1 Introduction
1.1 Adaptive fuzzy logic controller 1
1.2 Field programmable gate array 3
1.3 Organization of thesis 3
Chapter 2 Synchronization of Chaotic Systems
2.1 Overview and problem formulation 5
2.2 Fuzzy estimator 8
2.3 Adaptive fuzzy control with bound estimation compensator 11
2.4 Adaptive fuzzy control with fuzzy compensator 14
2.4.1 Fuzzy compensator 15
2.4.2 Design of adaptive fuzzy control with fuzzy compensator 15
2.5 Adaptive fuzzy control with hyperbolic tangent compensator 19
2.6 PI-type adaptive fuzzy control with hyperbolic tangent compensator 25
2.6 Simulation results 30
Chapter 3 Position Tracking Control of BLDC Motor
3.1 Overview and problem formulation 48
3.2 Fuzzy sliding-mode estimator 50
3.3 Adaptive fuzzy sliding-mode control with bound estimation compensator 53
3.4 Adaptive fuzzy sliding-mode control with fuzzy compensator 56
3.4.1 Fuzzy compensator 56
3.4.2 Design of adaptive fuzzy control with fuzzy compensator 57
3.5 Adaptive fuzzy sliding-mode control with hyperbolic tangent compensator 60
3.6 PI-type adaptive fuzzy sliding-mode control with hyperbolic tangent compensator 65
3.7 Experiment of BLDC motor 70
3.7.1 Experimental environment 70
3.7.2 Experimental results 71
Chapter 4 Conclusions and Future Researches
4.1 Conclusions 83
4.2 Future researches 83
Reference 85
Autobiography 90
[1]L. A. Zadeh, “Fuzzy sets,” Information control, vol. 8, pp. 338–353, 1965.
[2]U. Itlis, Control Systems of Variable Structure, NY: Jhon Wieley, 1976.
[3]X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding-mode control systems,” Fuzzy Sets and Systems, vol.95, no. 3, pp. 295-306, 1998.
[4]H. T. Yau, “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 341-347, 2004.
[5]C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding-mode control for induction servomotor systems,” IEEE Transaction on Energy Conversion, vol. 19, no. 2, pp. 362-368, 2004.
[6]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysus, Englewood Cliffs, NJ: Prentice Hall, 1994.
[7][Online] http://www.altera.com/
[8]R. E. Ziemer and W. H. Tranter, Principles of Communications Systems, Modulation, and Noise, NY: Jhon Wieley, 2002.
[9]G. Kolumban, M. P. Kennedy, and L. O. Chua, “The Role of Synchronization in Digital Communications Using Chaos—Part I: Fundamentals of Digital Communications,” IEEE Transaction on Circuits Systems-I, vol. 44, no.10, pp. 927-936, 1997.
[10]G. Kolumban, M. P. Kennedy, and L. O. Chua, “The Role of Synchronization in Digital Communications Using Chaos—Part II: Chaotic Modulation and Chaotic Synchronization,” IEEE Transaction on Circuits Systems-I, vol. 45, no.11, pp. 1129-1140, 1998.
[11]N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and A. R. Volkovskii, “Digital Communication Using Chaotic-Pulse-Position Modulation,” IEEE Transaction on Circuits Systems-I, vol. 48, no.12, pp. 1436-1444, 2001.
[12]L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no.8, pp. 821-824, 1990.
[13]K. Y. Lian, P. Liu, T. S. Chiang, and C. S. Chiu, “Adaptive synchronization design for chaotic systems via a scalar driving signal,” IEEE Transaction Circuits Systems-I, vol. 49, no. 1, pp. 17-27, 2002.
[14]M. T. Yassen, “Chaos control of Chen chaotic dynamical system,” Chaos, Solitons & Fractals, vol. 15, no. 2, pp. 271-283, 2003.
[15]H. T. Yau, “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos, Solitons & Fractals, vol.22, no.2, pp. 341-347, 2004.
[16]J. Wang, G. D. Qiao, and B. Den, “ variable universe adaptive fuzzy control for chaotic system,” Chaos, Solitons & Fractals, vol. 24, no. 4, pp. 1075-1086, 2005.
[17]J. H. Park, “Synchronization of Genesio chaotic system via backstepping approach,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1369-1375, 2006.
[18]H. T. Yau, “Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping,” Chaos, Solitons & Fractals, vol.34, no.4, pp. 1357-1365, 2007.
[19]X. Tong and N. Mrad, “Chaotic motion of a symmetric gyro subjected to a harmonic base excitation,” Journal of Applied Mechanics, vol.68, no.4, pp. 681-684, 2001.
[20]H. K. Chen, “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping,” Journal of Sound and Vibration, vol.255, no.4, pp. 719-740, 2002.
[21]C. M. Lin, Y. F. Peng, and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown nonlinear systems,” IEEE Transaction on Circuits Systems-II, vol.51, no.7, pp. 354-358, 2004.
[22]S. A. Billings and H. L. Wei, “A new class of wavelet networks for nonlinear system identification,” IEEE Transaction on Neural Networks, vol.16, no.4, pp. 862-874, 2005.
[23]J. J. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice Hall, 1991.
[24]K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Englewood Cliffs, NJ: Prentice-Hall, 1989.
[25]J. H. Park, S. J. Seo, and G. T. Park, “Robust adaptive fuzzy controller for nonlinear system using estimation of bounds for approximation errors,” Fuzzy Sets and Systems, vol. 133, no.1, pp. 19-36, 2003.
[26]C. Wang and D. J. Hill, ”Learning from neural control,” IEEE Transaction on Neural Networks, vol.17, no.1, pp. 130-146, 2006.
[27]N. Kim and A. J. Calise, “Several extensions in methods for adaptive output feedback control,” IEEE Transaction on Neural Networks, vol. 18, no.2, pp. 482-494, 2007.
[28]Y. Dote and S. Kinoshita, Brushless Servomotors: Fundamentals and Applications. Clarendon Press Oxford, 1990.
[29]K. W. Lee, D. K. Kim, B. T. Kim, and B. I. Kwon, “A Novel Starting Method of the Surface Permanent-Magnet BLDC Motors Without Position Sensor for Reciprocating Compressor,” IEEE Transaction on Industry Applications, vol. 44, no. 1, pp. 85-92, 2008.
[30]Y. Liu, Z. Q. Zhu, and D. Howe, “Direct torque control of brushless DC drives with reduced torque ripple,” IEEE Transaction on Industry Applications, vol.41, no.2, pp. 599-608, 2005.
[31]A. Rubaai, D. Ricketts, and M. D. Kankam, “Development and implementation of an adaptive fuzzy-neural-network controller for brushless drives,” IEEE Transaction on Industry Applications, vol. 38, no. 2, pp. 441-447, 2002.
[32]A. Rubaa, A. R. Ofoli, and D. Cobbinah, “DSP-based real-time implementation of a hybrid adaptive fuzzy tracking controller for servo-motor drives,” IEEE Transaction on Industry Applications, vol. 43, no. 2, pp. 476-484, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top