跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古金永
研究生(外文):Chin-Yung Ku
論文名稱:小腦模型控制器於機械臂之控制
論文名稱(外文):CMAC Controller forManipulatorArm
指導教授:林志民林志民引用關係
指導教授(外文):Chih-Min Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:62
中文關鍵詞:計算力矩法小腦模型控倒傳遞類神經網路
外文關鍵詞:Computed torque methodCMACBackpropagation neural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們描述了機械手臂的動態模型,提供了所需的關節、角度參數。我們以PD 控制器為基礎提出小腦模型控制器來做為輔助,來控制機械手臂與追蹤期望軌跡,其機械手臂是以水平軌跡的來做追蹤路徑,並分別與PD 控制器及PD 控制器為基礎以倒傳遞類神經網路來做為輔助比較,來證明所提出方法穩定性及追蹤性能的優越性。
In this thesis, we describe the dynamic robot model,
provides the necessary joints and the angle parameters. Based on the PD controller, a CMAC supplement controller is proposed to control the manipulator arm along the track trajectory on the horizontal plane. This controller is compared with a PD controller and a PD controller with backpropagation neural network, to illustrate the merits of stability and tracking performance for the proposed design method.
1. Introduction
1.1 Research motivation 1
1.2 Content and methodology of research 1
1.3 Introduction of robot 2

2. Manipulator Dynamics and Kinematics
2.1 Manipulator dynamics 4
2.2 Robot kinematics 7
2.3 Forward kinematics 8
2.4 Inverse kinematics 12

3. PD Controller
3.1 Manipulator control 15
3.2 Computed torque method 15
3.3 PD controller 17
3.4 Simulation of track trajectory 20
3.5 Simulation results analysis 26

4. PD Controller with Backpropagation Neural Network
4.1 What is neural network 27
4.2 Backpropagation neural network 27
4.3 Multi-layer feed-forward networks 28
4.4 Delta rule 29
4.5 Understanding backpropagation 32
4.6 Working with backpropagation 33
4.7 Simulation results of PD controller with neural
network 36

5. PD Controller with CMAC
5.1 Cerebellar model arithmetic controller 42
5.2 The concept of CMAC 42
5.3 Conventional CMAC 44
5.4 Simulation results of PD controller with CMAC 48
5.5 Root mean square error 54

6. Conclusions and Suggestions for Future Research
6.1 Conclusions 56
6.2 Suggestions for future research 56
[1] 江修,黃偉峰,”六軸機械臂之控制理論分析與應用”, 第
260期,2007.
[2] Intelitek (formally Eshed Robotec),
URL: http://www.intelitek.com, 2007.
[3] Wikipedia,
URL:http://en.wikipedia.org/wiki/Lagrangian_mechanics,
2009.
[4] C. H. An, C. G. Atkeson, and J. M. Hollerbach,
“Estimation of inertial parameters of rigid body links
of manipulators”, 24th IEEE Conference on Decision
and Control1, vol.24, pp.990-995, 1985.
[5] M. Spong and M. Vidyasagar, Robot Dynamics and
Control, Wiley, 1989.
[6] 指導教授:陳以明,研究生:薛吉順,多感測器資料融合技術
在機械手臂控制之軍事應用,中華民國八十七年。
[7] M. Navara and A. Nˇemeˇcek, Numerical Analysis with
Maple ,
URL:http://math.feld.cvut.cz/ftp/nemecek/texty/nemecek_MICA 2008.pdf,2009.
[8] J. P. Merlet, “Direct kinematics of parallel
manipulators”, IEEE Transactions on robotics and
automation, vol.28, pp. 213 – 220, 1993.
[9] M. L. Husty, “An Algorithm for Solving the Direct
Kinematic Of Stewart-Gough-Type Platforms”, Mechanism
and Machine Theory, vol.4, pp.365-380, 1994.58
[10] J. O’Brien, Forward and Inverse Kinematics,
California, 2008.
[11] Learn About Robots,
URL: http://www.learnaboutrobots.com/forwardKinematics.htm
[12] W. Zhang, Design Optimation for Manipulators,
University of New South Wales, 1997.
[13] M. Spong and M. Vidyasagar, Robot Dynamics and
Control, John Wiley, 1989.
[14] D. Jakobovic, The Evaluation of Problem Solving
Methods for Stewart Parallel MechanismKinematics,
University of Zagreb, 2001.
[15] R. Kelly and V. Santibanez, Control of Robot
Manipulators in Joint Space, Springer, 2003.
[16] J. J. Craig, Introduction to Robotics - Mechanics and
Control, 1986.
[17] J. Y. S. Luh, M.W. Walker and R. P. C. Paul,
“Efficient parallel algorithm for robot inverse
dynamics computation”, IEEE Transactions on Systems,
Man and Cybernetics, vol.16, pp. 532-542, 1986.
[18] H. Berghuis, P. L6hnberg and H. Nijmeijer, “Adaptive
output regulation of robot manipulators under
actuator constraints”, IEEE Transaction on Robotics
and Automation, vol. 16, pp. 29-35, 2000.
[19] R. Ortega and M.W. Spong, “Adaptive motion control
of rigid robots: a tutorial, Automatica”, utomatica,
pp.877-888, 1989.
[20] B. Paden and R. Panja, “Globally asymptotically
stable ''PD+'' controller forrobot manipulators,” Int.
J. Control, vol. 47, pp. 1697-1712, 1988.
[21] N. Sadegh, R. Horowitz. "Stability and robustness
analysis of a class of adaptive controllers for
robotic manipulators", Int. Journal of Robotics
Research, Vol. 9, pp. 74 -92, 1990.
[22] J. J. E. Slotine, and W. Li, “ Adaptive strategies
in constrained manipulator,”IEEE Int. Conf.
Robotics and Automation, pp. 595-601, 1987.
[23] M. W. Spong, R. Ortega and R. Kelly, “Comments on
Adaptive manipulator control: A case study”, IEEE
Transactions on Automatic Control, vol.35, pp.761-
762, 1990.
[24] D. Bayard and J. T. Wen, “New class of control laws
for robotic manipulators.Part 2: Adaptive case”,
Int. J. Control, vol. 47, pp. 1387-1406, 1988.
[25] H. Berghuis, H. Nijmeijer and P. Löhnberg, “An
addendum on “Robust control of robots by the
computed torque method”, Systems and control
letters, vol.18, pp.403-407, 1992.
[26] M. Ivanescu and V. Stoian, “A control system for
cooperating tentacle robots”, IEEE International
Conference on Robotics and Automation, vol.2, pp.
1540-1545, 1998.
[27] D. Popescu, D. Selisteanu and C. Ionete, On Adaptive
and Neural Control of a Robot Arm, University of
Craiova ,2001.
[28] Dr John A. Bullinaria, Introduction to Neural
Networks - Course Material and Useful Links, 2004.
[29] S. Haykin, Neural Networks – A Comprehensive
foundation, Amazon. 2004.
[30] S. A. Durai, and E. A. Saro, “Image Compression with
Back-Propagation Neural Network using Cumulative
Distribution Function”, WASET, vol.17, pp.60-64
2006.
[31] “Artificial Neural Network - Backpropagation Neural
Network”, URL:http://www.learnartificialneuralnetworks.com/backpropagation.html
[32] B. Kijsirikul and K. Chongkasemwongse, “Decision
tree pruning using backpropagation neural networks”,
International Joint Conference on Neural Networks ,
vol. 3, pp.1876-1880, 2001.
[33] E. Kalyvas, Using Neural Networks and Genetic
Algorithms to Predict Stock Market Returns ,
University of Manitoba ,2001.
[34] J. A. Freeman, D. M. Skapura, Neural Networks
Algorithms, Applications, and Programming Techniques,
Addison-Wesley, 1991.
[35] B. Kröse and P. Smagt, An Introduction to Neural
Networks,1996.
URL:http://www.fwi.uva.nl/research/neuro/
URL:http://www.op.dlr.de/FF-DR-RS/
[36] J. C. Principe, M. Kim, M. Fisher, “Target
discrimination in synthetic aperture radar using
artificial neural networks”, IEEE Transactions on
Image Processing, vol.7, pp. 1136 – 1149, 1998.
[37] Konar, Artificial intelligence and soft computing :
behavioral and cognitive modeling of the human brain,
Amazon, 2000.
[38] J. Tebelskis, Speech Recognition using Neural
Networks, Amazon, 1995.
[39] 蘇順豐博士,何書安,小腦模型演算控制器解析及其應用於適
應性控制之研究,中華民國九十五年六月七日。
[40] S. F. Su, T. Tao, and T. Hung,”Credit assigned CMAC
and its application to online learning robust
controllers”, IEEE Transactions on Systems, Man and
Cybernetics, Part B, vol. 33, No. 2, pp.202-213, 2003.
[41] A. Zalzala, A. Morris, Neural networks for robotic
control, IEEE Computing & Control Engineering
Journal , vol.7, pp. 249, 1996.
[42] M. M. Gupta, D. H. Rao, “Dynamic neural adaptive
control schemes for linear and nonlinear systems”,
IEEE Computers & Industrial Engineering, vol.2 , pp.
1450 – 1454, 1993.
[43] K. S. Narendra and K. Parthasaranthy,
“Identification and control of dynamical systems
using neural networks”, IEEE Transaction on Neural
Networks, vol.1,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top