跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹育承
研究生(外文):Yu-Cheng Chan
論文名稱:高階共振薄膜出光側視角的研究
論文名稱(外文):The Chromaticity Variation of the Oblique View Angle of the Organic Light Emitting Diodes with the Microcavity of Higher Order
指導教授:陳念波
指導教授(外文):Nien-Po Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:112
中文關鍵詞:側視角有機發光二極體微共振腔介電質鏡四分之一波長堆疊
外文關鍵詞:view of angleOLEDmicrocavitydielectric stack mirrorQWS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
微共振腔一般應用於半導體雷射、有機發光二極體 (OLED) 等元件,目的在於強化特定波長的輸出強度。一般我們所知道的微共振腔由一對反射鏡與腔體組成;其中一個反射鏡是電極金屬,另一個反射鏡是薄膜堆疊鏡,是由高低折射率的兩種介電質薄膜層,以四分之一波長光學厚度相互堆疊形成介電質鏡 (quarter wave stack,QWS) 。此微共振腔可以視為內部有電偶極光源的 Fabry-Perot 的裝置,本研究採用 QWS 並且安插更高倍數光學厚度的介電質層來改變共振腔的共振特性,稱為高階共振薄膜。高階共振薄膜於垂直視角時,可以在可見光頻譜範圍內擁有多於一個的共振波長,對於 OLED 色彩的純化,與變化組合,有很大的應用潛力。我們模擬計算在側視角變化時,高階共振薄膜共振條件的改變,並追蹤輸出光的強度效益與色度的改變,做為評估高階共振薄膜設計的依據。
Microcavity is usually applied to the semiconductor laser and Organic Light-Emitting Diodes (OLEDs) ; the purpose is to enhance the output intensity for specific wavelength. Usually the microcavity is composed of a pair of reflectors and the cavity. One of them is metal electrode, the other is a thin film stack mirror, which constitute the low/high refractive dielectric layer and use quarter wave stack thickness to build the (quarter wave stack,QWS). Microcavity structure is viewed as the emission from the electric dipoles inside Fabry-Perot device. This research uses QWS to provide placement for higher multiple optical thickness of dielectric to change the resonance characteristic of resonant cavity, called the microcavity of higher order. As the Microcavity of higher order was laid in vertical, it has more resonant wavelength in visible light spectrum scoop, having great potential applications for OLED chromaticity accuracy as well as the change combination. When simulate-counting the change in angle of view, we change the microcavity conditions of higher order, trace the beneficial for output intensity and change of chromaticity, taken to be the basis of the valuation design for microcavity of higher order.
書名頁. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
表錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
圖錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
符號說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 微共振腔的發展回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 微共振腔的應用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 本論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 有機發光二極體的基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 有機發光二極體的介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 有機發光二極體的原理. . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 有機發光二極體的結構. . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 有機發光二極體的材料性質. . . . . . . . . . . . . . . . . . . . 5
2.2 有機發光二極體的元件. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 有機發光二極體的發光型態. . . . . . . . . . . . . . . . . . . . 6
2.2.2 有機發光二極體的微共振腔. . . . . . . . . . . . . . . . . . . . 7
2.3 有機發光二極體顯示型. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 有機發光二極體全彩化技術. . . . . . . . . . . . . . . . . . . . 8
3 基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 波在界面上的傳遞現象. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 馬克士威爾方程式(Maxwell’s equations) . . . . . . . . . . . . . 11
3.1.2 斯涅耳定律(Snell’s law) . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 全內反射(Total internal reflection) . . . . . . . . . . . . . . . 12
3.1.4 瞬逝波(Evanescent wave) . . . . . . . . . . . . . . . . . . . . 13
3.2 電磁波的偏振現象. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 波的偏振(Polarization) . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 雙折射現象(Double refraction) . . . . . . . . . . . . . . . . . . 15
3.3 Fabry–P´erot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Fabry–P´erot 共振腔. . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Fabry–P´erot cavity 外部與內部發光源理論. . . . . . . . . . . . 17
3.3.3 Fabry–P´erot cavity 外部電場強度理論. . . . . . . . . . . . . . 18
3.4 布拉格定律(Bragg’s law) . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 布拉格晶體反射原理. . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 布拉格反射鏡(Distributed Bragg reflector) . . . . . . . . . . . 20
3.5 光在薄膜上的傳遞現象. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.1 單層薄膜界面的反射與透射. . . . . . . . . . . . . . . . . . . . 20
3.5.2 單層薄膜界面的斜向入射. . . . . . . . . . . . . . . . . . . . . . 23
3.5.3 多層薄膜界面的反射與透射. . . . . . . . . . . . . . . . . . . . 26
3.6 色彩空間定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 CIE 1931 色彩空間的定義. . . . . . . . . . . . . . . . . . . . . 29
3.6.2 色溫度(Color Temperature) . . . . . . . . . . . . . . . . . . 31
4 多層有機薄膜側視角的研究方法. . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 研究過程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.1 研究的流程圖. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 有機材料層結構. . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 薄膜反射鏡結構. . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 研究的計算方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 光學厚度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 光學強度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 相位變化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.4 品質因子(Q Factor) . . . . . . . . . . . . . . . . . . . . . . . 41
5 元件模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 驗證共振腔的模擬方程式. . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.1 理想的Airy Factor . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 微共振腔的反射率變化. . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 臨界角的反射率變化. . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 驗證單一腔體在斜角時的共振模擬方程式. . . . . . . . . . . . . . . . . 48
5.2.1 斜角時的共振強度變化. . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 安插DBR 反射鏡後共振強度變化. . . . . . . . . . . . . . . . . 49
5.3 改變有機發光二極體的結構來探討色域和明亮度變化. . . . . . . . . . . 51
5.3.1 單一腔體的有機發光二極體安插QWS 的結構. . . . . . . . . . . 52
5.3.2 多層有機發光二極體安插QWS 的結構. . . . . . . . . . . . . . 58
5.3.3 多層有機發光二極體安插高階共振薄膜的結構. . . . . . . . . . . 63
5.4 Device H1 搭配不同ITO 厚度來探討其視角的明亮度變化. . . . . . . . 71
5.4.1 Device H2 ITO = 60 nm 的明亮度變化. . . . . . . . . . . . . 71
5.4.2 Device H3 ITO = 70 nm 的明亮度變化. . . . . . . . . . . . . 79
6 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
附錄一:Octave / MATLAB 程式列表(主要運算程式碼) . . . . . . . . . . . . . 94
附錄二:Octave / MATLAB 程式列表(有機發光二極體膜層參數定義方程式) . . 101
附錄三:Octave / MATLAB 程式列表(介電質膜堆參數定義程式) . . . . . . . . 104
附錄四:Octave / MATLAB 程式列表(介電質膜堆反射率計算程式) . . . . . . . 106
附錄五:Octave / MATLAB 程式列表(視角色彩圖計算方程式) . . . . . . . . . 108
自傳. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
[1] 陳金鑫 黃孝文合著, OLED 有機電激發光材料與元件. 五南圖書出版公司, 2005.
[2] H. Becker, R. H. Friend, and T. D. Wilkinson, “Light emission from wavelength-tunable microcavities,” Appl. Phys. Lett., vol. 72, no. 11, pp. 1266–1268, 1998.
[3] B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys., vol. 85, pp. 3032–3037, 1999.
[4] T. Tsutsui, N. Takada, and S. Saito, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structrue,” Appl. Phys.
Lett., vol. 65, pp. 1868–1870, 1994.
[5] S. Tokito, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys., vol. 86, pp. 2407–2411, 1999.
[6] C. Fabry and A. P´erot, “Sur les franges de lames minces arg´entees et leur application ´a la mesure de petites ´epasseurs d’ air,” Ann. Chim Phys., vol. 12, pp. 459–501, 1897.
[7] E. M. Purcell, “Spontaneous emission properties at radio frequencies,” Phys. Rev., vol. 69, p. 681, 1946.
[8] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493–494, 1960.
[9] K. Tai, R. Fischer, K. Wang, S. Chu, and A. Cho, “Use of implant isolation for fabrication of vertical cavity surface-emitting laser diodes,” Electronics Letters, vol. 25, pp. 1644–1645, 1989.
[10] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, and R. Y. E. Bhat, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett., vol. 75, pp. 1036–1038, 1999.
[11] A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett., vol. 64, pp. 2486–2488,1994.
[12] K. Vahala, Optical microcavities. World Scientific, 4th ed., 2004.
[13] W.-C.Wu, H.-C. Yeh, L.-H. Chan, and C.-T. Chen, “Red organic light-emitting diodes with a non-doping amorphous red emitter,” Adv. Mater., vol. 14, pp. 1072–1075, 2002.
[14] Y. Kijima, N. Asai, and S.-I. Tamura, “A blue organic light emitting diode,”Jpn. J. Appl. Phys., vol. 38, no. 9A, pp. 5274–5277, 1999.
[15] M. Baldo, S. Lamansky, P. Burrows, M. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, pp. 4–6, 1999.
[16] C. Zhang, X. Liu, L. Qin, W. Zhu, and L. Wang, “White microcavity organic light-emitting diode based on one emitting material,” J. Lumin., vol. 122-123, pp. 590–592, 2007.
[17] S. Tokito, K. Noda, and Y. Taga, “Strongly directed single mode emission from organic electroluminescent diode with a microcavity,” Appl. Phys. Lett., vol. 68, pp. 2633–2635, 1996.
[18] S. Tokitoa, Y. Tagaa, and T. Tsutsuib, “Strongly modified emission from organic electroluminescent device with a microcavity,” Science, vol. 91, pp. 49–52, 1997.
[19] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., vol. 70, p. 152, 1997.
[20] 顧鴻壽, 有機電激發光顯示器技術及應用. 新文京開發出版股份有限公司, 2006.
[21] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys., vol. 65, p. 3610–3616, 1989.
[22] Y. Sato, S. Ichinosawa, and H. Kanai, “Operation characteristics and degradation of organic electroluminescent devices,” IEEE J. Quan. Electr., vol. 40, pp. 40–48, 1998.
[23] Z. H. Kafafi, Organic electroluminescence. Taylor & Francis Group, 2005.
[24] C. W. Tang and S. A. Van Slyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913–915, 1987.
[25] J. Burrououghes, D. Bradley, A. Brown, R. Marks, K. MacKet, R. Friend, P. Burn, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539–541, 1990.
[26] C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced organic lightemitting devices for enhancing display performances enhancing display performances,” IEEE J. Disp. Tech., vol. 1, pp. 248–266, 2005.
[27] F. A. Castro, G. B. Silva, F. Nuesch, L. Zuppiroli, and C. F. Graeff, “Influence of doping on spin-dependent exciton formation in Alq3 based OLEDs,” Science, vol. 8, pp. 249–255, 2007.
[28] S.-F. Hsu, C.-C. Lee, S.-W. Hwang, and C. H. Chen, “Highly efficient topemitting white organic electroluminescent devices,” Appl. Phys. Lett., vol. 86, pp. 253508–1–253508–3, 2005.
[29] M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett., vol. 81, pp. 3921–3923, 2002.
[30] N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett., vol. 63, pp. 2032–2034, 1993.
[31] A. Dodabalapur, L. J. Rothberg, and T. M. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett., vol. 65, no. 18, pp. 2308–2310, 1994.
[32] M. Berggren, O. Inganas, T. Granlund, S. Guo, G. Gustafsson, and M. R. Andersson, “Polymer light-emitting diodes placed in microcavity,” Synth. Met., vol. 76, pp. 121–123, 1996.
[33] M. Khan, W. Xu, J. Cao, Y. Bai, W. Zhu, X. Jiang, and Z. Z.L., “Spectral studies of white organic light-emitting devices based on multi-emitting layers,” Displays, vol. 28, pp. 26–30, 2007.
[34] A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and L. G., “White light and red-green-blue (RGB) electroluminescence by light color-conversion,” Opt.Mater, vol. 9, pp. 188–191, 1998.
[35] X. Wu, Y. Hua, Z. Wang, J. Zheng, S. Yin, J. Deng, K. Wu, Songliu, F. Zhu, and X. Niu, “Multi-color display and its model for a white OLED combined with optical color filters,” Optik-International Journal for Light and Electron Optics, vol. 117, pp. 373–376, 2006.
[36] Bhag singh Guru, H¨useyin R. Hiziro˘glu 原著, 劉宗平譯, 電磁學理論基礎. 新加坡商湯姆笙亞洲私人有限公司台灣分公司, 2002.
[37] 楊慶忠, 光電工程. 新文京開發出版股份有限公司, 2004.
[38] 曹大鵬, 應用電磁學. 全華科技圖書股份有限公司, 1991.
[39] J. Reto, Microcavity light emitting diodes in the visible red and near infrared wavelength range range. PhD thesis, ´Ecole Polytechnique F´ed´erale de Lausanne, 2005.
[40] H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A, vol. 15, pp. 1192–1201, 1998.
[41] H. A. Macleod, Thin-Film Optical Filters. Institute of Physics Publishing, 3rd ed., 2001.
[42] 李正中, 薄膜光學與鍍膜技術. 藝軒圖書出版社, 4th ed., 2004.
[43] P. Yeh, Optical waves in layered media. WILEY, 1991.
[44] 陳德請, 近代光電顯示工程導論. 全華圖書股份有限公司, 2006.
[45] 荊其誠焦書蘭喻柏林胡維生編著, 色度學. 科學出版社, 1991.
[46] B. Fraser, C. Murphy, and F. Bunting, Real World Color Management. Peachpit Press, 2 ed., 2004.
[47] B. J. Lindbloom, “XYZ to RGB conversion, http://www.brucelindbloom. com/.”
[48] A. F. Turner and P. W. Baumeister, “Multilayer mirrors with high reflectance over an extended spectral region,” Appl. Opt., vol. 5, pp. 69–76, 1966.
[49] X. Y. Liu, X. L. Wang, Y. Liu, S. L. E, J. M. Zhao, D. J. Wu, Y. Q. Ning, S. L. Wu, L. J. Wang, C. J. Liang, D. X. Zhao, Z. R. Hong, D. Zhao, C. Q. Jin, X. B. Jing, F. S. Wang, W. L. Li, and S. T. Lee, “Spontaneous emission properties of organic film in plane optical microcavity,” Thin Solid Films, vol. 363, pp. 204–207, 2000.
[50] S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett., vol. 69, pp. 2160–2162, 1996.
[51] Y.-K. Lina, F.-C. Chena, and C.-J. Ko, “Manipulation of the phase separation in organic blends by self-alignment method in sub-micron scale,” pp. AO–10, 2006.
[52] B. Crowell, Vibrations and Waves, Ch2. Light and Matter, 2nd ed., 2002. http://www.lightandmatter.com/html_books/3vw/ch02/ch02.html.
[53] E. Garmire, “Theory of quarter-wave-stack dielectric mirrors used in a thin Fabry–Perot filter,” Appl. Opt., vol. 42, pp. 5442–5449, 2003.
[54] H. Benisty, H. D. Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction–Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron., vol. 34, pp. 1612–1631, 1998.
[55] H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction–Part II:selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron., vol. 34, pp. 1632–1643, 1998.
[56] W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am., vol. 69, pp. 1495–1503, 1979.
[57] W. Lukosz and K. R. E., “Light emission by magnetic and electric dipoles close to a plane interface.I. Total radiated power,” J. Opt. Soc. Am., vol. 67, pp. 1607–1615, 1977.
[58] W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am., vol. 67, pp. 1615–1619, 1977.
[59] R. P. Stanley, R. Houdr´e, U. Oesterle, and M. Ilegems, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to
microcavities,” Phys. Rev. A, vol. 48, pp. 2246–2250, 1993.
[60] 謝振蓉, “以高階共振薄膜在紅藍綠OLEDs 元件應用,” Master’s thesis, 元智大學, 2007.
[61] Baidu, “Angle of view, http://baike.baidu.com/view/65833.htm/.”
[62] Wikipedia, “Viewing angle, http://en.wikipedia.org/wiki/Viewing_angle/.”
[63] 王朝珍, “以高階共振調整有機發光元件之色彩,” Master’s thesis, 元智大學, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊