跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉信逸
研究生(外文):Hsing-Yi Yeh
論文名稱:以視覺為基礎之公共場所抽煙異常事件偵測系統
論文名稱(外文):Vision-based Detection System of Smoking Event
指導教授:謝君偉謝君偉引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:56
中文關鍵詞:抽煙行為分析異常事件
外文關鍵詞:smokingcigarettebehavior analysisevent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來健康養生觀念不斷地在提升與推廣,而抽煙行為對於自身的健康有著相當的危害,政府亦於今年初開始實施菸害新法,明訂不得於吸煙區之外的場所抽煙,因此,我們於此篇論文中嘗試以視覺為基礎配合使用一般的監視系統設計一套抽煙行為偵測系統,主動監控異常的抽煙行為。
本系統建構於人臉偵測系統之下,再利用顏色特徵與抽煙事件中的各種特性來偵測香煙,最後配合手部動作與香煙之間的關連性與此行為本身的連續性加以分析辨識是否有異常行為發生。
由實驗結果得知,我們所建構的抽煙異常事件偵測系統對於抽煙行為的判斷有著不錯的效果。
In recently years, the concept of health is popularized and promoted unceasingly. Smoking is harmful to our health seriously. The government had put the new “Tobacco Hazards Prevention and Control Act” into practice this year. It stipulates that smoking in the public places is prohibited except in the designated smoking areas. Thereby, we propose a vision-based system and operate this system in coordination with general camera to detect smoking event.
Our system is based on face detection. We make use of color feature and various characteristics of smoking event to detect cigarette. And then, we analyze the correlation between cigarette and hands and the continuity of smoking event to recognize the behavior. Experimental results reveal that the performance of proposed system is well.
Content
摘 要 i
Abstract ii
誌 謝 iii
Content iv
List of Figure v
List of Table vii
Chapter 1 Introduction 1
Chapter 2 System Overview 5
Chapter 3 System Procedures 7
3.1 Face Detection 8
3.1.1 Pre-process of Face Detection 9
3.1.2 Zero-mean Filter 12
3.1.3 Feature Filter 13
3.1.4 Threshold and Weight 16
3.1.5 Cascade 18
3.2 Cigarette Detection 20
3.2.1 Cigarette Detection by Using Histogram 22
3.2.2 Ratio and Measure of Area 27
3.2.3 Condition of Location 33
3.2.4 Ratio Histogram 35
3.3 Hands Detection 37
Chapter 4 Behavior Analysis 39
Chapter 5 Experimental Results 43
Chapter 6 Conclusions 53
References 54
[1] Haiyuan Wu, Qian Chen, and Masahiko Yachida, “Face Detection from Color Images Using a Fuzzy Pattern Matching Method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, no.6, pp.557-563, June 1999.
[2] Rein-Lien Hsu, M. Abdel-Mottaleb, and A.K. Jain, “Face Detection in Color Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, no.5, pp.696 -706, May 2002.
[3] C. Chen and S.-P. Chiang, “Detection of Human Faces in Colour Images,” IEE. Proceedings on Vision, Image and Signal Processing, vol.144, no.6, pp.384-388, Dec. 1997.
[4] Jure Kovac and Peter Peer, “Human Skin Colour Clustering for Face Detection,” EUROCON 2003. International Conference on Computer as a Tool, Ljubljana, Slovenia, Sept. 2003.
[5] B. Menser and F. Muller, “Face Detection in Color Images Using Principal Components Analysis,” International Conference on Image Processing and Its Applications, (Conf. Publ. No. 465) vol.2, 13-15, pp.620-624, July 1999.
[6] Ming-Hsuan Yang, David J. Kriegman, and Narendra Ahuja, “Detecting Faces in Images: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, no.1, pp .34 – 58, Jan. 2002.
[7] Matthew A. Turk and Alex P. Pentland, “Face Recognition Using Eigenfaces,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ''91), pp.586-591, June 1991.
[8] Chin-Chuan Han, Hong-Yuan Mark Liao, Kuo-Chung Yu, and Liang-Hua Chen, “Fast Face Detection Via Morphology-based Pre-processing,” Pattern Recognition, Vol.33, no.10, pp.1701-1712, 2000.
[9] Zhujie and Y.L. Yu, “Face Recognition with Eigenfaces,” IEEE International Conference on Industrial Technology, pp.434-438, Dec. 1994.
[10] M. Fleury and A. F. Clark, “Karhunen-Loeve Transform: An Exercise in Simple Image-processing Parallel Pipelines,” Third International Euro-Par Conference, Passau, Germany, August 1997.
[11] Paul Viola and Michael Jones, “Robust Real-time Object Detection,” IEEE International Journal of Computer Vision vol.57, no.2, pp.137-154, May 2004.
[12] Chengjun Liu, “A Bayesian Discriminating Features Method for Face Detection,” IEEE Transaction on pattern analysis and machine intelligence vol.25 no.6, June 2003.
[13] H. A. Rowley, S. Baluja, and T. Kanade, “Neural Network-based Face Detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR ’96, 18-20, pp.203-208, June 1996.
[14] C. Garcia and M. Delakis, “Convolutional Face Finder: A Neural Architecture for Fast and Robust Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, pp.1408-1423, Nov. 2004.
[15] Kevin Curran, Xuelong Li, and Neil Mc Caughley, “The Use of Neural Networks in Real-time Face Detection,” ANSInet, ISSN: 1549-3636, vol.1, no.1, pp: 47-62, 2005.
[16] Rong Xiao, Ming-Jing Li, and Hong-Jiang Zhang, “Robust Multipose Face Detection in Images,” IEEE transaction on circuit and systems for video technology vol.14, issue 1,pp.31-41, January 2004.
[17] T. B. Moeslund and E. Granum, “A Survey of Computer Vision-based Human Motion Capture,” Computer Vision and Image Understanding, vol. 81, no. 3, pp. 231-268, Mar. 2001
[18] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Probabilities Posture Classification for Human-behavior Analysis,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: System and Humans, vol. 35, no. 1: pp. 42-54, Jan. 2005.
[19] Ismail Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time Surveillance of People and Their Activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830, 2000.
[20] S. Maybank and T. Tan, “Introduction to Special Section on Visual Surveillance,” International Journal of Computer Vision, vol. 37, no. 2, pp. 173-173, 2000.
[21] Ivana Mikic, Mohan Trivedi, Edward Hunter, and Pamela Cosman, “Human Body Model Acquisition and Tracking Using Voxel Data,” International Journal of Computer Vision, vol. 53, no. 3, pp. 199-223, 2003.
[22] N. Werghi, “A Discriminative 3D Wavelet-based Descriptors: Application to the Recognition of Human Body Postures,” Pattern Recognition Letter, vol. 26, no. 5, pp.663-677, 2005.
[23] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian Computer Vision System for Modeling Human Interactions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 831-843, Aug. 2000.
[24] R. Rosales and S. Sclaroff, “3D Trajectory Recovery for Tracking Multiple Objects and Trajectory Guided Recognition of Actions,” Proceeding of IEEE Conference On Computer Vision and Pattern Recognition, vol. 2, no. 2, pp. 637-663, June 1999.
[25] H. Meng, N. Pears, and C. Bailey, “A Human Action Recognition System for Embedded Computer Vision,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-6, June. 2007.
[26] Y. A. Ivanov and A. F. Bobick, “Recognition of Visual Activities and Interactions by Stochastic Parsing,” IEEE Transactions on Pattern Recognition and Machine Intelligence, vol. 2, no. 8: pp. 852-872, Aug. 2000.
[27] Christopher Wren, Ali Azarbayejani, Trevor Darrell, and Alex Pentland, “Pfinder: Real-time Tracking of the Human Body,” IEEE Transactions. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top