跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祐綱
研究生(外文):You-Kang Lin
論文名稱:遮蔽情況下之群眾人數統計
論文名稱(外文):Counting Pedestrians in Crowds under Occlusions
指導教授:謝君偉謝君偉引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:56
中文關鍵詞:人數統計重心描述元馬可夫鏈蒙地卡羅
外文關鍵詞:People CountingCentroid ContextMarkov chain Monte Carlo.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從遮蔽情況的群眾影像裡頭切割行人並統計人數一直以來都是影像處理上的一個難題,通常處理群眾人數統計問題的研究都會做一些假設以簡化問題。例如攝影機角度必須從人群正上拍攝,這樣的話,人群之間的遮蔽情況會被簡化成區塊合併與分開的問題,不會有深度上的近景遮蔽遠景的問題;另外也可能假設利用多隻攝影機共同監視一個區域,再利用多隻不同角度攝影機的多方面資訊彌補單隻攝影機資訊上的不足。但是這些假設不符合實際應用,因此本論文將針對一般監視器(單隻攝影機側面俯角拍攝)的視角做群眾人數統計。本論文使用輪廓比對做快速群眾人數估測,並利用馬可夫鏈蒙地卡羅法(Markov chain Monte Carlo Method)做後續樣板比對驗證實際人數,然後藉由樣板比對的結果動態產生新的輪廓模型。
It’s difficult to segment and count people in occlusion. This problem has been an important task for a long time. Usually, we propose some hypotheses to simplify the problem of counting people in crowded. For example, the camera must be set the higher place top of humans. Therefore, the occlusion event between people will be simplified to blob merge and split. The problem of occlusion which far objects cover with near objects will be not produced. On the other hand, we can use multi cameras to surveillance the area which has overlap region between cameras. Then, use different information of cameras to make up for the problem of information is not enough in single camera. But those supposes are not suitable in real work. So, this thesis will count people under normal camera (one camera in side-view). This thesis uses contour matching to complete people counting quickly. It also uses markov chain monte carlo method to do the follow-up procedure of template matching. Finally, we use the result of template matching to create new contour model on-line.
摘 要 i
Abstract ii
誌 謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與方法 1
1.3 相關文獻回顧 4
1.4 我們的貢獻 14
1.5 論文架構 15
第二章 研究架構 16
第三章 背景知識 19
3.1 平均值追蹤法 19
3.2 頭部點偵測 20
第四章 人數統計 23
4.1 貝氏估測法 23
4.1.1 事前分配 24
4.1.2聯合相似度 26
4.2 馬可夫鏈蒙地卡羅法 30
4.2.1 馬可夫鏈動態集 33
4.2.2 推薦機率 34
4.3 時間序列樣板過濾器 36
4.4 利用重心描述元作輪廓比對 39
第五章 實驗結果 41
5.1 測試資料 41
5.2 人群人數統計結果 45
第六章 結論 54
參考文獻 55
[1]V. Rabaud and S. Belongie, “Counting Crowded Moving Objects,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 705-711, Jun. 2006.
[2]G. Antonini and J.P. Thiran, “Counting Pedestrians in Video Sequences Using Trajectory Clustering,” IEEE Transactions On Circuits And Systems For Video Technology, Vol. 16, No. 8, pp. 1008-1020, August 2006.
[3]T. Zhao, R. Nevatia, and B. Wu, “Segmentation and Tracking of Multiple Humans in Crowded Environments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, No. 7, pp. 1198-1211, July 2008.
[4]B. Leibe, E. Seemann, and B. Schiele, “Pedestrian Detection in Crowded Scenes,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 878-885, Jun. 2005.
[5]Z. Lin, L.S. Davis, D. Doermann, and D. DeMenthon, “Hierarchical Part-Template Matching for Human Detection and Segmentation,” International Conference on Computer Vision, pp. 1-8, Oct. 2007.
[6]L. Dong, V. Parameswaran, V. Ramesh, and I. Zoghlami, “Fast Crowd Segmentation Using Shape Indexing,” International Conference on Computer Vision, pp. 1-8, Oct. 2007.
[7]B. Wu and R. Nevatia, “Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors,” International Conference on Computer Vision, Vol. 1, pp. 90-97, Oct. 2005.
[8]X. Song and R. Nevatia, “A Model-based Vehicle Segmentation Method for Tracking,” International Conference on Computer Vision, Vol. 2, pp. 1124-1131, Oct. 2005.
[9]B. Wu, R. Nevatia, and Y. Li, “Segmentation of Multiple, Partially Occluded Objects by Grouping, Merging, Assigning Part Detection Responses,” IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2008.
[10]B. Bose, X. Wang, and E. Grimson, “Multi-class object tracking algorithm that handles fragmentation and grouping,” IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2007.
[11]K. Smith, D. Gatica-Perez, and J.-M. Odobez, “Using Particles to Track Varying Numbers of Interacting People,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 962-969, Jun. 2005.
[12]A.M. Cheriyadat, B.L. Bhaduri, and R.J. Radke, “Detecting Multiple Moving Objects in Crowded Environments with Coherent Motion Regions,” IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2008.
[13]Z. Kim, “Real Time Object Tracking based on Dynamic Feature Grouping with Background Subtraction,” IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2008.
[14]G.J. Brostow and R. Cipolla, “Unsupervised Bayesian Detection of Independent Motion in Crowds,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 594-601, Jun. 2006.
[15]J. Rittscher, P.H. Tu and, N. Krahnstoever, “Simultaneous Estimation of Segmentation and Shape,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 486-493, Jun. 2005.
[16]R. Eshel and Y. Moses, “Homography Based Multiple Camera Detection and Tracking of People in a Dense Crowd,” IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2008.
[17]S.M. Khan and M. Shah, “Tracking Multiple Occluding People by Localizing on Multiple Scene Planes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 3, pp. 505-519, March 2009.
[18]A.J. Joshi and N.P. Papanikolopoulos, “Learning to Detect Moving Shadows in Dynamic Environments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, No. 11, pp. 2055-2063, November 2008.
[19]N. Martel-Brisson and A. Zaccarin, “Learning and removing cast shadows through a multidistribution approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 7, pp. 1133-1146, July 2007.
[20]A.B. Chan, Z.-S.J. Liang, and N. Vasconcelos, “Privacy preserving crowd monitoring Counting people without people models or tracking,” IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top