跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝曜隆
研究生(外文):Yao-Lung Hsieh
論文名稱:以有機金屬化學氣相沉積成長表面粗化之高效率氮化鎵發光二極體
論文名稱(外文):High-efficiency of GaN-based LED with Naturally Textured Surface Grown by Metal Organic Chemical Vapor Deposition
指導教授:賴芳儀賴芳儀引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:75
中文關鍵詞:氮化鎵發光二極體粗化
外文關鍵詞:GaNLEDNaturally Textured Surface
相關次數:
  • 被引用被引用:1
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
GaN LED元件之材料折射係數約為2.5,空氣折射係為1,經由Snell’s Law所計算出全反射臨界角約為23度,此角度限制了光取出效率。因此本文使用MOCVD系統作為磊晶成長之主要方法,並在HTP-GaN之後加入一層LTP-GaN之磊晶結構,並改變LTP-GaN成長條件,分別為溫度從850℃降低至700℃、時間從10分鐘增加至90分鐘、Ⅴ/Ⅲ比從5236降低至1240,來觀察不同成長條件下對於磊晶片與LED元件的影響。我們將以磊晶片與LED元件兩部分來討論: 首先在磊晶片部分,我們使用SEM與AFM來觀察外觀形態的改變,量測結果顯示,當LTP-GaN之Ⅴ/Ⅲ比從5236降低至1240且成長溫度在850 ℃有最大的RMS其值為150 nm。之後將此LED元件使用EL量測元件光電特性,量測結果顯示在固定20 mA驅動電流下,表面粗化元件的發光強度比平面元件多50%。
根據文獻指出此六角形空穴缺陷之螺旋差排會穿過LED元件發光層造成漏電流之路徑,導致元件失效,因此改變不同HTP-GaN成長厚度從1000Å增加至3000Å,量測結果顯示,當HTP-GaN成長厚度為3000 Å,在逆向偏壓Human Body Mode增加至-3000V時以及Machine Mode增加至-300V時,抗靜電能力均在90%良率,因此HTP-GaN厚度的增加,對於抗靜電能力有正面的提升。
The refractive indexes of GaN and air are 2.5 and 1.0, respectively. According to Snell`s law, light traveling from GaN to air travels only within a critical angle of 23˚. The whole LED structure in this thesis was grown by Metal Organic Chemical Vapor Deposition (MOCVD) for epitaxial growth. High temperature (HT) P-GaN layer and a relatively low temperature (LT) P-GaN layer by changing the parameters of temperature, growth time, V/III ratio. Temperatures are form 850℃ to 700℃. Growths of time are from 10min to 90min. V/III ratios are from 5236 to 1240. The measurements where divided into two parts. First, in InGaN wafer, SEM and AFM were used to measurements the surface change. When the V/III ratio changed from 5236 to 1240 and growth temperature was 850℃. The RMS is 150 nm. EL measure ment was performed to the characterize the of diode. Light extraction efficiency of the rough surface LED with RMS of 150 nm was enhance about 50% than the smooth surface LED biased at 20 mA.

Considering defects in GaN material, many studies indicated that the threading dislocations formed from the inverted hexagonal cones on the surface and penetrating the active layer of LED act as a path for leakage current. In this study, measurement the thicknesses of HT p-GaN were changed from 1000Å to 3000Å. The measurement results for ESD robustness test showed that the yields were above 90% in either -3000V Human Body Mode (HBM) or -300V Machine Mode (MM); Therefore, the increase of HT p-GaN thickness can effectively increase the ESD robustness.
目 錄

書名頁 …………………………………………………………………i
論文口試委員審定書 ………………………………………………ii
中文摘要 ……………………………………………………………iii
英文摘要 ……………………………………………………………iv
誌謝 ……………………………………………………………………v
目錄 …………………………………………………………………vi
圖目錄 ………………………………………………………………vii

第一章 簡介………………………………………………………… 1
1.1 簡介…………………………………………………………1
1.2 研究動機……………………………………………………4
1.3 發光二極體量子效率………………………………………6
1.4 文獻探討 …………………………………………………12

第二章 量測系統與原理介紹 ……………………………………16
2.1 有機金屬化學氣相沉積 …………………………………16
2.2 氮化鎵材料成長機制 ……………………………………24
2.3 掃描式電子顯微鏡 ………………………………………28
2.4 原子力顯微鏡 ……………………………………………30
2.5 靜電放電模擬 ……………………………………………31

第三章 實驗方法……………………………………………………34
3.1 樣品製備 …………………………………………………34
3.2 實驗設計 …………………………………………………38
3.3 晶粒製作 …………………………………………………41

第四章 實驗結果與討論……………………………………………45
4.1 低溫P-GaN磊晶成長實驗結果與討論……………………45
4.2 低溫P-GaN磊晶成長實驗結論……………………………57
4.3 低溫P-GaN磊晶成長光電特性實驗結果…………………59
4.4 高溫 P-GaN磊晶成長光電特性實驗結果 ………………66

第五章 結論與未來展望……………………………………………69
5.1 結論 ………………………………………………………69
5.2 未來工作 …………………………………………………72

參考文獻 ……………………………………………………………73
[1]郭浩中, 賴芳儀, 郭守義,“LED發光二極體原理與應用,”
五南出版社 (2009)
[2]T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su,
W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu,
and J. F. Chen, “InGaN/GaN Tunnel-Injection Blue Ligh- Emitting Diodes,”IEEE Transactions on Electron Device,
Vol. 49, PP. 1093-1095 (2002)
[3]D. B. Eason, W. C. Hughes, J. Ren, M. Reiegner, Z. Yu,
J. W. Cook, J. F. Schetzina, G. Cantwell, and W. C.
Harsch, “High-Brightness Green Light-Emitting
Diodes,” Electronics Letters, Vol. 30, PP. 1178-1180
(1994)
[4]G. E. Stillman, V. M. Robbins, and N. Trabatabaie,
“Ⅲ-ⅤCompound Semiconductor Devices: Optical
Detectors ,” IEEE Transactions on Electron Device,
Vol. 31, PP. 1643-1655 (1984)
[5]K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y.
Lin, and H. X. Jiang, “AlGaN-Based Ultraviolet Light-
Emitting Diodes Grown on AlN Epilayers,” Applied
Physics Letters, Vol. 85, PP. 4777-4779 (2004)
[6]H. Sugawara, and M. Ishikawa, and G. Hatakoshi,
“High-Efficiency InGaAlP/GaAs Visible Light-Emitting
Diodes,” Applied Physics Letters, Vol. 58, PP. 1010-
1012 (1990)
[7]F. Schubert, “Light-Emitting Diodes,” 2nd edition,
Camberidge University Press, PP. 185 (2006)
[8]M. R. Krames, M. O. Holcomb, G. E. Hofler, C. C.
Coman, E. I. Chen,I. H. Tan, P. Grillot, N. F.
Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F.
A. Kish, and M.G. Craford, “High-Power Truncated-
Inverted-Pyramid (AlxGa1-x)0.5In0.5P/GaP Light-
Emitting Diodes Exhibiting >50% External Quantum
Efficiency,” Applied Physics Letters, Vol. 75, PP.
2365-2367 (1999)
[9]C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C.
Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo,
“Nitride-Based LEDs With Textured Side Walls,” IEEE
Photonics Technology Letters, Vol. 16, PP. 750-752
(2004)
[10]D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E.
Lee, W. Y. Lin, and J. S. Fang, “Enhanced Output
Power of Near-Ultraviolet InGaN-GaN LEDs Growen on
Patterned Sapphire Substrates,” IEEE Photonics
Technology Letters, Vol. 17, PP. 288-290 (2005)
[11]D. H. Kim, C. O. Cho, Y. G. Roh, H. J. and Y. S.
Park, “Enhanced Light Extraction from GaN-Based Light-
Emitting Diodes with Holographically Generated Two-
Dimensional Photonic Crystal Patterns,” Applied
Physics Letters, Vol. 87, PP. 203508 (2005)
[12]J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, W. C.
Lai, “InGaN Light-Emitting Diodes With Naturally
Formed Truncated Micropyramids on Top Surface,”
Applied Physics Letters, Vol. 88, PP. 113505 (2006)
[13]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M.
Chang, C. C. Liu and W. C. Hung, ”Inductively Coupled
Plasma Etching of GaN Using Cl2/Ar and Cl2/N2 Gases,”
Journal of Applied Physics, Vol. 85, PP. 1970-1974
(1999)
[14]X. A. Cao, and S. J. Peartona, A. P. Zhang, G. T.
Dang, and F. Ren, R. J. Shul, and L. Zhang, R. Hickman
and J. M. Van Hove “Electrical Effects of Plasma
Damage in P-GaN,” Applied Physics Letters, Vol. 75,
PP. 2569-2571 (1999)
[15]L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P.
Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai and
J. K. Sheu, ”In0.23Ga0.77N/GaN MQW LEDs With Low
Temperature GaN Cap Layer,” Solid-State Electronics,
Vol. 47, PP. 2027-2030 (2003)
[16]Y. K. Su, S. J. Chang, S. C. Wei, Shi-Ming Chen, and
Wen-Liang Li, ”ESD Engineering of Nitride-Based
LEDs,” IEEE Transactions on Device and Materials
Reliability, Vol. 5, PP. 277-281 (2005)
[17]http://zh.wikipedia.org/wiki/Wikipedia
[18]I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N.
Sawaki, “Effects of Ain Buffer Layer on
Crystallographic Structure and On Electrical and
Optical Properties of GaN and Ga1-xAlxN (0 < x ≦0.4)
Films Grown on Sapphire Substrate by MOVPE,” Journal
of Crystal Growth, Vol. 98, PP. 209-219 (1989)
[19]S. Nakamura, “GaN Growth Using Buffer Layer,”
Japanese Journal of Applied Physics, Vol. 30, PP. 1705-
1707 (1991)
[20]紀國鐘, 蘇炎坤, ”光電半導體技術手冊,” 經濟部技術處,
(2004)
[21]汪建民, “材料分析,” 中國材料科學學會, (2008)
[22]http://www.ics.ee.nctu.edu.tw/~mdker/ESD/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊