跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李欣懌
研究生(外文):Hsin-Yi Li
論文名稱:智慧型自組織小腦模型控制器應用於汽車控制設計
論文名稱(外文):Intelligent Self-Organizing Cerebellar Model Articulation Controller for Car Control Design
指導教授:林志民林志民引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:100
中文關鍵詞:自組織小腦模型控制器汽車控制設計
外文關鍵詞:Self-Organizing of Cerebellar Model Articulation ControllerCar Control Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對小腦模型控制器進行設計,並結合適應控制、監督式控制以及自組織控制設計技巧,來提出自組織小腦模型控制器,並應用於閉迴路系統的控制上。在監督式自組織小腦模型控制器設計上,防鎖死剎車系統與汽車追隨控制問題可視為一個追蹤問題,利用監督式自組織小腦模型控制器來控制可獲得非常不錯的結果。最後,將發展多輸入多輸出的自組織小腦模型控制器,並應用於變換車道系統的控制上。最後經由模擬的結果顯示,對於這些系統,本論文所提出的控制器均能獲得滿足的控制性能。除了使用matlab進行模擬外,同時也利用虛擬實境(VR)技術進行模擬,在VR系統,利用3D Studio MAX建構場景,並使用3D動畫開發工具Virtual Reality來製作整個動作流程,並藉由此虛擬實境來呈現車輛的動作,驗證本論文所提出的控制法則對於汽車控制能達到良好的控制效能。
This thesis focuses on the design of the Cerebellar Model Articulation Controller (CMAC) based on adaptive control, supervisory control and self-organizing control, which attempt to provide a comprehensive treatment of CMACs in closed-loop control applications. For supervisory self-organizing Cerebellar Model Articulation Controller, the antilock braking systems (ABS) and the car-following control system are formulated as the tracking problems. The supervisory self-organizing Cerebellar Model Articulation Controller is designed to achieve satisfactory tracking performance for antilock braking system and car-following control system. Finally, a design method of self-organizing CMAC for multi-input multi output nonlinear is developed and is applied to lane-change control system. From the simulation results, the proposed intelligent control techniques have been shown to achieve satisfactory control performance for the considered nonlinear systems. In addition to using matlab’s simulations, the virtual reality (VR) simulations are also carried out. In the VR system, the 3D Studio MAX is used to construct the scenes, and use the 3D animation development tool Virtual Reality is used to program the entire playing process. Moreover, the virtual reality technique is applied to show the motion of vehicles. The simulation results are illustrated to validate the proposed control method for car control applications.
Contents
書名頁 i
論文口試委員審定書 ii
授權書 iii
摘要 iv
Abstract v
致謝 vii
Contents viii
List of Figures xi
Nomenclature xv
Chapter 1 Introduction
1.1 General Remark and Overview of Previous Work 1
1.2 Organization of This Thesis 3
Chapter 2 Self-Organizing of Cerebellar Model Articulation Controller (SOCM)
2.1 Overview 5
2.2 Original Cerebellar Model Articulation Controller 7
2.3 General Cerebellar Model Articulation Controller 11
2.4 Self-Organizing of CMAC 13
Chapter 3 Self-Organizing CMAC Hybrid Control for Antilock Braking System
3.1 Overview 21
3.2 Formulation of ABS 21
3.3 Hybrid Control System Design 24
3.4 Simulation Results 30
3.5 Summary 31
Chapter 4 Adaptive Self-Organizing CMAC Controller for Car-Following System
4.1 Overview 42
4.2 Problem Formulation 43
4.2.1 Platoon dynamic 43
4.2.2 Vehicle model 43
4.3 Car-Following Control System Design 45
4.4 Simulation Results 50
4.5 Summary 51
Chapter 5 Lane-Change Control Using Self-Organizing CMAC
5.1 Overview 63
5.2 MIMO Nonlinear Systems 64
5.3 SOCM Design 67
5.4 Stabilizing Adaptive Laws for SOCM 69
5.5 Illustrative Example 73
5.6 Summary 75
Chapter 6 Conclusions and Future Study
6.1 Conclusions 91
6.2 Future study 92
Reference 93
Autobiography 100
[1] K. S. Narendra and K. Parthasara thy , “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.
[2] R. M. Sanner and J.-J. E. Slotine, “Gaussian networks for direct adaptive control,” IEEE Trans. Neural Networks, vol. 3, no. 6, pp. 837-863, 1992.
[3] A. Agarwal, “ A systematic classification of neural-network-based control,” IEEE Contr. Syst. Mag., vol. 17, pp. 75-93, 1997.
[4] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller with guaranteed tracking performance,” IEEE Trans. Neural Networks, vol. 7, no. 2, pp. 388-399, 1996.
[5] K, Nam, “Stabilization of feedback linearizable systems using radial basis function network,” IEEE Trans. Automatic Control, vol. 44, no. 5, pp. 1026-1031, 1999.
[6] S. S. Ge, C. C. Hang, and T. Zhang, “Adaptive neural network control of nonlinear systems by state and output feedback,” IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 29, no. 6, pp. 818-828, 1999.
[7] J. R. Noriega and H. Wang, “A direct adaptive neural-network control for unknown nonlinear systems and its application,” IEEE Trans. Neural Networks, vol. 9, pp. 27-34, 1998.
[8] M. Zhihong, H. R. Wu, and M. Palaniswami, “An adaptive tracking controller using neural networks for a class of nonlinear systems,” IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 947-1031, 1998.
[9] M. A. Mayosky and G. I. E Cancelo, “Direct adaptive control of wind energy conversion system using Gaussian network,” IEEE Trans. Neural Networks, vol. 10, pp. 898-906, 1999.
[10] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Trans. Neural Networks, vol. 6, no. 1, pp. 144-156, 1995.
[11] T. W. S. Chow and Y. Fang, “A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics,” IEEE Trans. Ind. Electron., vol. 45, no. 1, pp. 151-161, 1998.
[12] C. Gan and K. Danai, “Model-based recurrent neural network for modeling nonlinear dynamic systems,” IEEE Trans. Systems, Man, and Cybernetics- Part B: Cybernetics, vol. 30, no. 2, pp. 344-351, 2000.
[13] Y. Fang, T. W. S. Chow, and X. D. Li, “Use of a recurrent neural network in discrete sliding-mode control,” IEE Proc., Control Theory and Applications, vol. 146, no. 1, pp. 84-90, 1999;
[14] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” J. Dyn. Syst., Measurement, Contr., vol. 97, pp. 220-227, 1975.
[15] M. Brown, C. J. Harris, and P. C. Parks, “The interpolation capabilities of the binary CMAC”, Neural Network, vol. 6, pp. 429-440, 1993.
[16] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks” IEEE Control Syst. Mag., vol. 12, no. 2, pp. 23-30, 1992.
[17] J. C. Jan and S. L. Hung, “High-order MS_CMAC neural network” IEEE Trans. Neural Networks, vol. 12, no. 3, pp. 598-603, 2001.
[18] R. J. Wai, C. M. Lin, and Y. F. Peng, “Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor” Proc. IEE, Contr. Theory Appl., vol. 150, no. 3, pp. 221-232, 2003.
[19] Y. F. Peng, R. J. Wai, and C. M. Lin, “Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 35-48, 2004.
[20] C. T. Chiang and C. S. Lin, “CMAC with general basis functions” IEEE Trans. Neural Networks, vol. 9, no. 7, pp. 1199-1211, 1996.
[21] J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network” IEE, Contr. Theory Appl., vol. 152, no. 2, pp. 133-137, 2005.
[22] C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 1248-1260, 2004.
[23] C. M. Lin, Y. F. Peng, and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown nonlinear systems” IEEE Trans. Circuits Syst. II, vol. 51, no. 7, pp. 354-358, 2004.
[24] C. M. Lin and Y. F. Peng, “Missile guidance law design using adaptive cerebellar model articulation controller” IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 636-644, 2005.
[25] D. Marr, “A theory of cerebellar cortex” J. Physiol., vol. 202, no. 2, pp. 437-470, 1969.
[26] J. S. Albus, “A theory of cerebellar function” Math. Biosci., vol. 10, no. 1, pp. 25-61, 1971.
[27] D. J. Linden, “Cerebellar long-term depression as investigated in a cell culture 95 preparation” Behav. Brain Sci., vol. 19, no. 1, pp. 339-346, 1996.
[28] P. Chauvet and G. A. Chauvet “Mathematical conditions for adaptive control in Marr’s model of the sensorimotor system,” IEEE Trans. Neural Networks, vol. 8, no. 5, pp. 693-706, 1995.
[29] M. Ito, The Cerebellum and Neural Control. Raven Press, New York: Raven Pr., 1984.
[30] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. New York: Wiley, 1949.
[31] M. Ito, “Mechanisms of motor learning in the cerebellum” Brain Research Interactive, vol. 886, no .1, pp. 237-245, 2000.
[32] Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller for robot manipulators,” IEEE Trans. Syst., Man, Cybern., C, vol. 30, pp. 22-31, 2000.
[33] Chih-Min Lin and Te-Yu Chen, "Self-Organizing CMAC Control for a Class of MIMO Uncertain Nonlinear Systems" IEEE Trans. Neural Networks, publish on line.
[34] J. R. Layne, K. M. Passino, and S. Yurkovich, “Fuzzy learning control for antiskid braking systems,” IEEE Trans. Contr. Syst. Technol., vol. 1, pp. 122–129, 1993.
[35] J. Harned, L. Johnston, and G. Scharpf, Measurement of tire brake force characteristics as related to wheel slip (antilock) control system design, 1986, SAE paper 690 214.
[36] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[37] S. Sastry and M. Bodson, Adaptive Control—Stability, Convergence, and Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[38] S. Kikuchi, and P. Chrkroborty, “Car-following model based on fuzzy inference system”, Transportation Res. Rec. 1365, TRB, 1993.
[39] W. Lang, C. Wang, and Y. Chiang, “On the car-following model with fuzzy control”, Proc. 2nd Nat. Conf. Fuzzy Theory & Application (Fuzzy’94), pp. 380—385,1994.
[40] R. J. Caudill, and W. L. Garrard, “Vehicle-follower longitudinal control for automated transit vehicles”, Journal of Dynamic Systems, Measurement and Control, Vol. 99, No. 4, pp. 241-248, 1997.
[41] H. Y. Chiu, G. B. Stupp, Jr., and S. J. Brown, J., “Vehicle-follower control with variable gains for short headway automated guideway transit systems”, Journal of Dynamic Systems, Measurement and Control, Vol. 99, No. 3, pp. 183-189, 1997.
[42] S. Sheikholeslam, and C. A. Desoer, “ A system level study of the longitudinal control of a platoon of vehicles”, Journal of Dynamic Systems, Measurement and Control, Vol. 114, No. 2, pp. 286-292, 1992.
[43] S. Sheikholeslam, and C. A. Desoer, “Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: A system level study”, IEEE Transactions on Vehicular Technology, Vol. 42, No 4, pp. 546-554, 1990.
[44] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[45] J. Godthelp, A. R. A. Van Der Horst, S. Burrij, and C. Van Der Lagemaat, “Open and closed loop steering in a lane change maneuver,” Institute for Perception: National Defense Research Organization Group, 1983.
[46] R. A. Hess and A. Modjtahedzadeh, “A preview control model of driver steering behavior,” 1989 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 504-509, 1989.
[47] R. Rajesh, H. S. Tan, B. K. Law, and W. B. Zhang, “Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons,” IEEE Transactions on Control System Technology, vol. 8, no. 4, pp. 695-708, 2000.
[48] D. N. Godbole, V. Hagenmeyer, R. Sengupta, and D. Swaroop, “Design of emergency for automated highway system: Obstacle avoidance problem,” IEEE Conference on Decision and Control, vol. 5, pp. 4774-4779, 1997.
[49] Z. Shiller and S. Sunder, “Emergency lane-change maneuvers of autonomous vehicles,” ASME J. Dynamic Systems, Measurement, and Control, vol. 120, no. 1, pp. 37-44, 1998.
[50] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern. B, vol. 15, pp116-132, 1985.
[51] S. G. Cao, N. W. Rees, and G. Feng, “Stability analysis of fuzzy control systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 26, no. 1, pp. 201-204, 1996.
[52] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller-part Ⅰ/Ⅱ,” IEEE Trans. Syst., Man, Cybern. B, vol. 20, no. 2, pp. 404-435, 1990.
[53] Qiuzhen Qu, Jianwu Zhang, and Yanzhu Liu, “Variable structure model following control of active four-wheel-steering vehicle based on the optimal reference model,” Vehicle Electronics Conference, 1999. (IVEC ''99) Proceedings of the IEEE International, vol. 1, pp. 254-257, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top