跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯錫文
研究生(外文):Hsi-Wen Hou
論文名稱:應用干涉型光纖感測器量測結構衝擊應變響應
論文名稱(外文):The Impact Responses of Structures Measured by the Interferometric Fiber-Optic Sensors
指導教授:何旭川
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:174
中文關鍵詞:光纖感測器Mach-Zehnder干涉儀衝擊響應衝擊鎚落下測試
外文關鍵詞:fiber-optic sensorsMach-Zehnder interferometryimpact responseimpact hammerdrop test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
光纖感測器是目前智慧結構中之主要元件之一,不僅在通訊科技方面能有顯著的進步,其高頻寬及低耗損的特性,更能應用於感測與量測。尤其光纖具有直徑小、重量輕、韌性強、抗腐蝕等等優點,對於材料結構上的感測與量測皆具有很大的優勢。本文應用光纖感測器量測結構受到外力衝擊作用後之應變響應,結合光彈理論與Mach-Zehnder干涉推導出光相位差與應變關係,應用3x3光耦合器三個輸出端各具120゚相位差之特性,配合Matlab軟體中的SIMULINK數學運算軟體,將光訊號加以分析並反算出結構應變,並與應變規量測所得比較。實驗使用之外力包含衝擊鎚敲擊與自由落體掉落,試片則包含樑與板兩種結構,試片夾持方式為單邊固定及雙邊固定兩種模式。探討衝擊鎚敲擊不同位置和不同落下高度之衝擊響應,將光纖感測之結構應變與應變規量測值比較,驗證光纖量測結構暫態響應之準確度與可行性。
Fiber-Optical sensors with small dimension, light weight, low loss and wide bandwidth, have been widely used in the smart structures. In this work, the Fiber-Optic sensors are employed to measure the impact responses of beam and plate structures by using the Mach-Zehnder interferometric technique. The beam and plate are subjected to the impact via a impact hammer and drop test. The strain responses measured by the fiber-optic sensor are validated with the strain gauge. Good agreements between the fiber-optic sensor and strain gauge demonstrate that the fiber-optic sensor is capable of measuring the transient response of the structures.
目錄
書名頁 .................................................i
論文口試委員審定書 ....................................ii
授權書 ...............................................iii
中文摘要 ..............................................iv
英文摘要 ...............................................v
誌謝 ..................................................vi
目錄 .................................................vii
表目錄 ................................................ix
圖目錄 ................................................xi
符號說明 .............................................xxi
一、緒論 ............................................ 1
1.1 研究動機 ...................................... 1
1.2 文獻回顧 ...................................... 1
1.3 研究方法及內容 ................................ 2
二、干涉型光纖感測器量測原理 ........................ 4
2.1 光纖感測器 .................................... 4
2.1.1 光干涉原理 .................................... 4
2.1.2 光干涉儀種類 .................................. 5
2.1.3 Mach-Zehnder光纖干涉儀 ........................ 6
2.2 干涉型光纖感測器量測原理 ...................... 6
2.3 應用3x3光耦合器解調光相位差 ................... 9
2.4 光相位之解調驗證 .............................. 12
三、應用光纖系統量測敲擊之動態響應 .................. 14
3.1 光纖量測設備與感測光路 ........................ 14
3.2 敲擊衝量 ...................................... 16
3.3 樑試片敲擊響應量測 ............................ 17
3.3.1 懸臂樑試片敲擊響應 ............................ 17
3.3.2 兩端固定樑之敲擊響應 .......................... 18
3.4 板試片敲擊響應量測 ............................ 19
3.4.1 鋁板單邊固定之敲擊響應 ........................ 19
3.4.2 鋁板雙邊固定之敲擊響應 ........................ 21
3.5 實驗結果分析 .................................. 22
四、應用光纖系統量測掉落測試之動態響應 .............. 25
4.1 光纖量測設備與感測光路 ........................ 25
4.2 衝擊理論 ...................................... 26
4.3 樑試片落下測試響應量測 ........................ 26
4.3.1 懸臂樑試片落下測試響應 ........................ 27
4.3.2 兩端固定樑之落下測試響應 ...................... 28
4.4 板試片落下測試響應量測 ........................ 29
4.4.1 鋁板單邊固定之落下測試響應 .................... 29
4.4.2 鋁板雙邊固定之落下測試響應 .................... 30
4.5 實驗結果分析 .................................. 32
五、結論 ............................................ 35
參考文獻 ............................................ 39
表 .................................................. 41
圖 .................................................. 69
簡歷 ................................................174
[1]C. Hwu, and T. C. Ting, “Two-Dimensional problems of the anisotropic elastic solid with an elliptic inclusion", The Quarterly Journal of Mechanics and Applied Mathematics, Vol.42, No.4, pp.553-572 (1989)

[2]Y. Benveniste, G. J. Dvorak and T. Chin, “Stress fields in composites with coated inclusions”, Mechanics of Materials, Vol.7, No.4, pp.305-317 (1989)

[3]L. P. Kollar, “Calculation of the stresses and strains in embedded fiber optic sensors”, Journal of Composite Materials, Vol.32, No.18, pp.1647-1679 (1998)

[4]L. Yuan, and L. Zhou, “Sensitivity coefficient evaluation of an embedded fiber-optic strain sensor”, Sensors and Actuators A: Physical, Vol.69, No.1, pp.5-11 (1998)

[5]K. T. Lau, L. Yuan, L. Zhou, J. S. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors”, Composite Structures, Vol.51, No1, pp.9-20 (2001)

[6]J. F. Nye, “Physical properties of crystals” Oxford University Press (1985)

[7]廖延彪編著,“光纖光學”,北京清華大學出版社 (2000)

[8]C. D. Butter, and G. B. Hocker, “Fiber optics strain gauge”, Applied Optics, Vol. 17, No. 18, pp.2867-2869 (1978)

[9]J. S. Sirkis, and H. W. Haslach, “Interferometric Strain Measurement by Arbitrarily Configured, Surface-Mounted, Optical Fibers”, Journal of Lightwave Technology, Vol.8, No.10, pp.1497-1503 (1990)

[10]J. S. Sirkis, “Unified approach to phase-strain-temperature models for smart structure interferometric optical fiber sensors: part 1”, Optical Engineering, Vol.32, No.4, pp.752-761 (1993)

[11]J. S. Sirkis, “Unified approach to phase-strain-temperature models for smart structure interferometric optical fiber sensors: part 2”, Optical Engineering, Vol.32, No.4, pp.762-773 (1993)

[12]P. L. Fuhr, P. J. Kajenski, D. L. Kunkel, D.R. Huston, “A subcarrier intensity modulated fiber optic sensor for structural vibration measurements”, Mechanical Systems and Signal Processing, Vol.7, No.2, pp.133-143 (1993)

[13]G. A. Gurchonok, I. A. Djodjua, S. R. Amirova, T. V. Tulaikova, “Using fiber gratings in the short-length sensors based on micromechanical vibrations”, Sensors and Actuators A : Physical, Vol.93, No.3, pp.197-205 (2001)

[14]H. Zhao, Z. G. Cao, R. H. Fang, “Measurement of Internal Strain and Vibration of Structure by Embedded Optical Fiber Strain Sensors”, SPIE, Vol.3555, pp.300-304 (1998)

[15]陳汶鋅, “內埋干涉型光纖感測器結構分析與量測研究”, 元智大學機械工程研究所論文 (2001)

[16]蔡昌宇, “光纖感測器與主結構間之應變傳遞分析與量測研究”, 元智大學機械工程研究所論文 (2003)

[17]黃致穎, “光纖感測器應變與溫度量測研究”, 元智大學機械工程研究所論文 (2004)

[18]游佩仁, “光纖感測器對懸臂樑結構之振動量測研究”, 元智大學機械工程研究所論文 (2004)

[19]李樹國, “光纖感測器在彎曲與扭轉試驗之量測研究”, 元智大學機械工程研究所論文 (2004)

[20]楊智閔, “干涉型光纖感測器對懸臂樑結構之振動量測研究”, 元智大學機械工程研究所論文 (2007)

[21]D. A. Brown, C. B. Cameron, R. M. Keolian, D. L. Gardner, and S. L. Garrett, “A symmetric 3x3 coupler based demodulator for fiber optic interferometric sensors ”, SPEI, Vol.1584, pp.328-335 (1991)

[22]E. Udd, “Fiber Optical Sensors”, pp.273-274, John Wiley and Sons, Inc. Press (1991)

[23]王栢村著, ”振動學”, 全華科技圖書股份有限公司 (1997)

[24]藍先進, “電路板衝擊試驗與有限元素模擬分析”, 元智大學機械工程研究所論文 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top