跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林慰捷
研究生(外文):Wei-Chieh Lin
論文名稱:微小型燃料重組器與高溫質子交換膜燃料電池整合研究
論文名稱(外文):Integration study of Micro reformer and High temperature PEM Fuel cell
指導教授:蘇艾蘇艾引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:119
中文關鍵詞:產氫甲醇重組器蒸汽重組反應高溫質子交換膜燃料電池整合研究
外文關鍵詞:Hydrogen productionmethanol reformersteam reforming reactionhigh- temperature proton exchange membrane fuel cellintegration study
相關次數:
  • 被引用被引用:1
  • 點閱點閱:752
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃結合甲醇燃料燃燒器及甲醇重組器的產氫實驗,並連結高溫質子交換膜燃料電池發電。燃燒器及重組器分別地使用商購的白金氧化觸媒及銅鋅觸媒,首先確認燃燒器的熱能足以提供甲醇蒸汽重組反應,改變重組器的實驗參數:操作溫度、甲醇水溶液進料流率及水碳比等,進行重組器效能實驗。產物使用即時氣體分析儀進行分析,計算出產物中有74%~74.9%的氫氣, 23.5%~25.7%的二氧化碳,一氧化碳小於2%。
使用低一氧化碳濃度及最高甲醇轉換率的實驗參數,接著進行重組器與燃料電池的整合實驗;重組氣體可以使發電效率最高6W的高溫質子交換膜燃料電池提供3~4W的電力;然而氣體因為未加壓造成進氣流量及電池電流不穩定。
本研究建立了一個甲醇重組器及高溫質子交換膜的整合平台,提供未來重組器與燃料電池整合研究的基本架構。
This study is a combination of methanol fuel combustor and methanol reformer hydrogen production experiment. And links to high-temperature proton exchange membrane fuel cell to generate electricity. Reformer and combustor use the commercial platinum-oxide catalyst and the copper-zinc catalyst, respectively. First of all, to confirm the combustor provide heat sufficient to the reorganization of methanol steam reaction. Change the experimental parameters of reactor: operating temperature, methanol-water solution flow rate of feed and steam to carbon ratio, to carry out the performance experiment of reformer. The production use Real-Time Gas Analyzer for analysis The product of 74% ~ 74.9% hydrogen, 23.5% ~ 25.7% of carbon dioxide; not more than 2% of carbon monoxide by calculation.
To use the experimental parameters that low carbon monoxide concentration and the highest methanol conversion rate, then the reformer and fuel cell integration experiment is performed. Reformer gas can provide high-temperature proton exchange membrane fuel cell 3 ~ 4W of electricity ,which the maximum efficiency is 6W. However, because the gas which is not pressurized caused the inlet flow rate and battery current are instability.
In this study, a methanol reformer and high-temperature proton exchange membrane fuel cell integrated platform was set up. The result provide the basic structure of integration study of micro reformer and high- temperature proton exchange membrane fuel cell in the future.
書頁名............................................... I
審定書............................................... III
授權書. ............................................. IV
中文摘要 ............................................ V
英文摘要 ............................................ VI
誌謝 ................................................ VII
目錄 ................................................ VIII
表目錄 .............................................. XI
圖目錄 .............................................. XV
符號說明 ............................................ XVI
第一章 緒論 ..................................... 1
1.1 前言 ........................................ 1
1.2 研究背影與動機 .............................. 2
1.2.1 氫能運用於燃料電池 .......................... 3
1.2.1.1 質子交換膜燃料電池 ......................... 4
1.2.1.2 直接甲醇燃料電池 ........................... 4
1.2.1.3 高溫質子交換膜燃料電池 ..................... 5
1.2.1.4 甲醇重組燃料電池 ........................... 6
1.2.2 世界各國及台灣重組器的發展狀況 ............. 6
1.2.2.1 美國微型重組器發展狀況 ..................... 6
1.2.2.2 日本微型重組器發展狀況 ..................... 7
1.2.2.3 歐洲微型重組器發展狀況 ..................... 8
1.2.2.4 中國微型重組器發展狀況 ..................... 8
1.2.2.5 韓國微型重組器發展狀況 ..................... 9
1.2.2.6 台灣微型重組器發展狀況 ..................... 10
1.2.3 微型重組器關鍵技術 ......................... 10
1.2.3.1 微/小型化設計............................... 10
1.2.3.2 觸媒技術.................................... 11
1.2.3.3 組裝氣密性 ................................. 11
1.2.3.4 重組器排列與燃料電池整合技術................ 11
1.3 文獻回顧 ................................... 12
1.4 研究目的 ................................... 20
第二章 甲醇重組器原理與設計........................ 22
2.1 甲醇重組反應原理 ........................... 22
2.1.1 水蒸氣重組法 ............................... 22
2.1.2 部分氧化重組法.............................. 24
2.1.3 自發熱重組法 ............................... 24
2.2 實驗設計與目標 ............................. 25
2.2.1 燃燒器 ..................................... 26
2.2.2 重組器 ..................................... 26
2.2.3 整體實驗系統建立 ........................... 27
第三章 實驗設備與實驗方法.......................... 30
3.1 實驗儀器 ................................... 30
3.1.1 燃燒反應器與燃料供應系統 ................... 30
3.1.2 甲醇重組反應器及進料系統.................... 32
3.1.3 甲醇重組產物量測分析儀器 ................... 34
3.1.4 觸媒 ....................................... 35
3.1.5 燃燒與重組器保溫裝置 ....................... 37
3.1.6 高溫質子交換膜燃料電池及電池效能量測儀器 ... 37
3.2 研究方法.................................... 38
3.3 實驗步驟.................................... 40
3.3.1 觸媒活化及反應器組裝 ....................... 40
3.3.2 絕熱措施 ................................... 41
3.3.3 管路配置.................................... 41
3.3.4 燃料配置 .................................. 41
3.3.5 儀器設定 ................................... 42
3.3.6 實驗操作步驟 ............................... 43
第四章 結果與討論 ................................. 44
4.1 燃燒器性能測試結果與討論 ................... 44
4.2 建立即時氣體分析儀之敏感參數................ 46
4.2.1 測試原理 .................................. 46
4.2.2 測試結果 .....................................47
4.3 重組器初步產氫測試 ......................... 48
4.3.1 進料速率之影響.............................. 48
4.3.2 GHR-30LPH75甲醇重組器測試結果............... 50
4.4 重組器效能實驗.............................. 51
4.4.1 效率定義 .....................................52
4.4.2 反應效率與溫度之關係 ....................... 55
4.4.3 反應效率與進料流量之關係.................... 55
4.4.4 甲醇水溶液水碳比與反應效率之關係 ........... 56
4.4.5 一氧化碳濃度與溫度、水碳比及進料流率之關係.. 58
4.4.6 燃燒器之甲醇消耗量 ......................... 58
4.4.7 觸媒氧化保護 ............................... 59
4.5 重組器連接燃料電池實驗 ...................... 59
第五章 結論....................................... 62
5.1 燃燒器與重組器結合......................... 62
5.2 即使氣體分析儀之敏感參數................... 63
5.3 重組器效能 ................................ 63
5.3.1 重組器產氫效能............................. 63
5.3.2 甲醇水溶液進料流率 ............................64
5.3.3 重組反應溫度................................ 64
5.3.4 甲醇水溶液之水碳比.......................... 65
5.4 高溫質子交換膜燃料電池效率.................. 66
5.5 未來規劃 .....................................67
參考文獻 ............................................. 69
附錄一 KATALCO 51-8 Methanol synthesis catalyst.... 73
附錄二 聯華氣體分析報告書 ........................ 74
附錄三 祥樺氣體分析報告書 ........................ 75
附錄四 明揚氣體分析報告書 ........................ 76
1. Han J., Kim I. S., Choi K. S., 2000, ” Purifier-integrated methanol reformer for fuel cell vehicles,” Journal of Power Sources Vol. 86 pp.223–227
2. Zanfir M., Gavriilidis A., 2003, “Catalytic combustion assisted methane steam reforming in a catalytic plate reactor,” Chem. Eng. Sci., Vol. 58, pp.3947–3960.
3. Ashok S. P., Terry G. D., Nicholas S., Elizabeth B., Kristopher G., Michael Q., Christopher B.,2004,“ Portable fuel cell systems for America’s army: technology transition to the field, “Journal of Power Sources Vol. 134 pp.220-225
4. Holladay J. D., Jones, E. O., Dagle, R. A., Xia G. G., Cao C., Wang Y., 2004, “High efficiency and low carbon monoxide micro-scale methanol processors,” J. Power Sources Vol.131 pp.69-72.
5. Seo D. J., Yoon, W. L., Yoon, Y. G., Park, S. H., Park, G. G., Kim, C. S., 2004, “Development of a micro fuel processor for PEMFCs,” Electrochim. Acta Vol. 50 pp.719-723.
6. Reuse P., Renken A., Haas-Santo K., Gorke O., Schubert K.,2004,“ Hydrogen production for fuel cell application in an autothermal micro-channel reactor, “Chemical Engineering Journal Vol.101 pp.133–141.
7. Park G.G., Seo D. J., Park, S. H., Yoon, Y. G., Kim, C. S., Yoon, W. L., 2004, “Development of microchannel methanol steam reformer,” Chem. Eng. J., Vol. 101, pp. 87-92.
8. Yamamoto K., Kawamura Y., Ogura N., Yamamoto T., Terazaki T., 2004, “ Proceeding of the Fuel cell Seminar,” San Antonio, TX, USA
9. Comions V., Hardt S., Hessel V., Kolb G., Lowe H., Wichert M., and Zapf R., 2005, “A methanol steam micro-reformer for low power fuel cell applications,” Chem. Eng. Comm., Vol. 192, pp.685–698.
10. Horng R.F., 2005, “Transient behaviour of a small methanol reformer for fuel cell during hydrogen production after cold star,” Energy Conversion and Management, Vol. 46,pp.1193–1207
11. Kawamura Y., Ogura Y. T., Yamamoto K., Terazaki T., Yamamoto T., and Igarashi A., 2005, “Multi-layered microreactor system with methanol reformer for small PEMFC,” J. Chem. Eng. Jpn., Vol. 38, pp.854-858.
12. Kawamura Y., Yamamoto K., Ogura N., Katsumata T., Igarashi A., 2005, “Preparation of Cu/ZnO/Al2O3 catalyst for a micro methanol reformer,” J. Power Sources Vol.150 pp.20-26.
13. Park G. G., Yim S. D., Yoon Y. G., Kim C. S., 2005, “Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems,” Catalysis Today, Vol.110, pp.108-113.
14. Schwank W.J., Tadd A.R., Gould B.D., 2005, “Packed bed versus microreactor performance in autothermal reforming of isooctane,”Catalysis Today Vol. 110 pp. 68–75.
15. Vlachos D.G., Deshmukh, S.R., 2005, “Effect of flowconfiguration on the operation of coupled combustor/reformer microdevices for hydrogen production,” Chemical Engineering Science, Vol. 60 ,pp. 5718 – 5728.
16. Kawamura Y., Ogura N., Yamamoto T., and Igarashi A., 2006, “A miniaturized methanol reformer with Si-based microreactor for a small PEMFC,” Chem. Eng. Sci., Vol. 61, pp.1092–1101.
17. Kim J. J., Kwon O. J., Hwang S., Chae J.H., Kang M.S., and, 2007, “Performance of a miniaturized silicon reformer-PrOx-fuel cell system,” J. Power Sources, Vol. 165, pp.342–346
18. Kundu A., Jang J.H., Lee H. R., Kim S., Gil J. H., Jung C. R., and Oh Y.S., 2006, “MEMS-based micro-fuel processor for application in a cell phone,” Int. J. Heat Mass Transfer, Vol. 162, pp.572–578.
20. Yoshida K., Tanaka S., Hiraki H., and Esashi M., 2006, “A micro fuel reformer integrated with a combustor and a microchannel evaporator,” J. Micromechanics and Microengineering, Vol. 16, pp.191–197.
21. Kolb G., Hessel V., Cominos V., Hofmann C., Lowe H., Nikolaidis G., Zapf R., Ziogas A., Delsman E.R., De Croon M.H.J.M., Schouten J.C., De La Iglesia O., Mallada R., and Santamaria J., 2007, “Selective oxidations in micro-structured catalytic reactors—For gas-phase reactions and specifically for fuel processing for fuel cells,” Catal. Today, Vol. 20, pp.2-20.
22. Park D., Kim T., Kwon S., Kim, C.,nd Yoon, E., 2007, “Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells,” Sens. Actuators, A, Vol. 135, pp.58–66.
23. Woo S. I., Lim M. S., Kim M. R., Noh J., 2005, “A plate-type reactor coated with zirconia-sol and catalyst mixture for methanol steam-reforming,” Journal of Power Sources, Vol.140, pp.66-71.
24. Firerro J.L.G., Alejo L., Lago R., Peña M.A. , 1997, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts,” Applied Catalysis A: General, Vol.162, pp.281-297.
25. Woo S. I., Won J. Y., Jun H. K., Jeon M. K., 2006, “Performance of microchannel reator combined with combustor for methanol steam reforming,” Catalysis Today, Vol. 161, pp.158-163.
26. Sohn J. M., Byun Y. C., Cho J. Y., Choe J., Song K. H., 2007,” Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol,” Int. J. Hydrogen Energy.
27. Men Y., Kolb G., Zapf R., Tiemann D., Wichert M., Hessel V., Lo H.¨we, 2008, “A complete miniaturized microstructured methanol fuel processor/fuel cell system for low power applications.,” Int. J.Hydrogen Energy, Vol.33, pp.1374-1382.
28. 朱訓志,”甲醇燃料氧化燃燒實驗分析,”碩士論文,元智大學機械工程研究所,民國97年。
29. 劉毅弘等,”燃料電池微小型重組器及一氧化碳轉化技術探討,”清潔生產暨永續發展研討會論文集,工業技術研究院,民國96年。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top