跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕融
研究生(外文):Yi-Rong Chen
論文名稱:平板型閉迴路脈衝式熱管水平操作之研究
論文名稱(外文):Horizontal Operation of Flat-Plate Closed-Loop Pulsating Heat Pipes
指導教授:林育才
指導教授(外文):Yur-Tsai Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:114
中文關鍵詞:平板型閉迴路脈衝式熱管振盪式熱管
外文關鍵詞:Flat-Plate Closed-Loop Pulsating Heat PipesPulsating Heat Pipes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因脈衝式熱管無需毛細結構,吸引了許多學者在此被動式兩相流散熱增益機制之研究。近年來,平板型脈衝式熱管之特性應用在均溫板上,是一項相當具有競爭力之被動式散熱元件。本文研究試圖縮小平板型脈衝式熱管的體積,並且水平操作內部也能順利產生兩相流振盪現象,因此設計出兩種流道平板型脈衝式熱管,皆利用銅平板加工閉迴路流道,平板尺寸為122×57×5.5 mm3。均勻流道平板型脈衝式熱管的矩形流道之截面積由2×2 mm2所構成,一共有16條流道,8個彎管數;非均勻平板型脈衝式熱管的矩形流道之截面積由1×2 mm2、2×2 mm2相鄰排列所構成,一共有16條流道,8個彎管數。兩者皆覆蓋上透明壓克力板,以建立可視化模組,工作流體為純水。利用高速攝影機,觀測在水平操作下,不同熱負載時,兩相流運動型態對蒸發端溫度之影響,及其有效熱傳之方式,實際觀察到兩相流開始穩定循環流動時,將有最佳熱傳性能。實際量測熱傳性能,非均勻流道平板型脈衝式熱管在最佳填充率60%時,可得系統總熱阻為0.81(°C/W)。此非均勻流道設計在填充率低於50%時,內部無法持續產生兩相流振盪以達有效熱傳,因此熱傳接近金屬之熱傳導。而均勻流道平板型脈衝式熱管在水平操作下,不論填充率是40%、50%、60%、70%皆無法做動。
In recent years, Pulsating Heat Pipes (PHPs) without wick structures have drawn much attention of many researchers for enhancing heat transfer through passive two-phase flow heat transfer mechanism. The characteristics of flat-plate closed-loop pulsating heat pipes are applied on spreaders widely and viewed as competitive passive heat transfer devices. This research aims to experimentally investigate thermal performance of flat-plate closed-loop Pulsating Heat Pipes (CLPHPs) in horizontal operating condition. Two tested CLPHPs are made of copper capillary tubes with overall size 122×57×5.5 mm3, one of them has 16 parallel square channels with cross-section 2×2 mm2, called uniform CLPHPs, and the other one, called non-uniform CLPHPs, has 8 parallel square channels with cross-section 2×2 mm2 and 8 parallel square channels with cross-section 1×2 mm2. The working fluid used on the two CLPHPs is distilled water. Both of them are covered by acrylic plates for visualization study. By using a high-speed video camera, the effects of two-phase flow patterns on the evaporator temperature and the heat transfer mechanism for various heat loads are investigated. The results show that the optimal performance of heat transfer occurs at a steady circulating flow pattern. It is also found that, non-uniform CLPHPs with a filling ratio of 60% can operate in horizontal position and the optimal performance of overall thermal resistance is 0.81(°C/W). The operation limit of the filling ratio is 50%, below which oscillating two-phase flows disappear and the heat transfer mechanism approximates to conduction. The uniform one can’t work with any filling ratios in horizontal position.
目 錄
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 iv
英文摘要 vi
致 謝 vii
目 錄 viii
表 目 錄 xii
圖 目 錄 xiii
符 號 說 明 xviii
第一章 緒 論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 12
第二章 脈衝式熱管原理簡介 14
2.1 脈衝式熱管之基本構造及工作原理 14
2.1.1 脈衝式熱管之基本構造 14
2.1.2 脈衝式熱管之工作原理 17
2.2 脈衝式熱管之結構特性 19
2.3 脈衝式熱管之熱傳機制 21
2.4 液體薄膜之行為 24
2.4.1 汽液界面 24
2.4.2 表面張力 24
2.4.3 毛細阻抗效應 25
2.4.4 脫離壓力 27
2.4.5 表面張力對流譜之效應 27
2.4.6 汽液飽和曲線 28
2.5 閉迴路脈衝式熱管性能參數設計 28
2.5.1 毛細管內徑 28
2.5.2 工作流體填充率 (Filling Ratio,FR) 30
2.5.3 工作流體之選擇 30
2.5.4 重力場的影響 32
2.6 脈衝式熱管之特性 33
第三章 實驗設備與實驗方法 34
3.1 平板型脈衝式熱管可視化模組 34
3.1.1交錯流道平板型脈衝式熱管製作 34
3.1.2均勻流道平板型脈衝式熱管製作 37
3.2實驗設備 39
3.2.1實驗測試系統 39
3.2.2熱電偶校正 42
3.2.3誤差分析 43
3.3實驗架構與分析方法 46
3.3.1平板型脈衝式熱管可視化實驗架構 46
3.3.2平板型脈衝式熱管可視化實驗步驟 47
3.3.3可視化模組 49
3.3.4實驗之穩態溫度 51
3.3.5熱損失評估 52
3.3.6實驗分析方法 53
第四章 實驗結果與討論 54
4.1可視化平板型脈衝式熱管之最佳填充率 54
4.1.1可視化非均勻流道平板型脈衝式熱管實驗結果與討論 55
4.1.2可視化交錯流道平板型脈衝式熱管之最佳填充率 60
4.2平板型脈衝式熱管流譜可視化模組 62
4.2.1交錯流道平板型脈衝式熱管之可視化模組 63
4.2.2均勻流道平板型脈衝式熱管之可視化模組 83
4.3操作角度之影響 97
4.3.1操作角度對非均勻平板型脈衝式熱管之影響 97
4.3.2操作角度對均勻平板型脈衝式熱管之影響 100
4.4填充率之影響 102
4.4.1填充率對非均勻平板型脈衝式熱管之影響 103
4.4.2填充率對均勻平板型脈衝式熱管之影響 105
第五章 結論與建議 108
5.1結論 108
5.2建議 108
參考文獻 110
表 目 錄
表2-1 純水與乙醇性質表 32
表4.1 交錯流道各操作參數下之實際輸入熱負載表 61
表4.2均勻流道各操作參數下之實際輸入熱負載 83
圖 目 錄
圖1-1 各種型式的LOOP TYPE HEAT PIPES 11
圖1-2 各種型式的脈衝式熱管 11
圖1-3 可視化模組 12
圖1-4 可視化封閉迴路脈衝式熱管示意圖 12
圖2-1 傳統熱管作動原理 16
圖2-2 脈衝式熱管裝置概念圖 16
圖2-3 典型毛細塊狀流之作用力示意圖 18
圖2-4 脈衝式熱管之迴路種類 20
圖2-5 內部強制對流沸騰之流譜轉變與熱傳係數關係圖 22
圖2-6 流譜轉變量測到之對應管壁溫差圖 23
圖2-7 脈衝振盪之熱傳原理 23
圖2-8 液體薄膜在流道內情形 24
圖2-9 液柱表面張力 25
圖2-10 動態接觸角影響毛細阻抗示意圖 26
圖3-1 平板型脈衝式熱管之底板加工設計圖 35
圖3-2 可視化平板型脈衝式熱管 35
圖3-3 ALCATEL真空泵浦 36
圖3-4 真空填充系統 37
圖3-5 平板型脈衝式熱管之底板加工設計圖 38
圖3-6 可視化平板型脈衝式熱管 38
圖3-7 加熱銅塊設計圖 39
圖3-8 水冷式平板 39
圖3-9 電源供應器 40
圖3-10 電功率計 40
圖3-11 恆溫水槽 41
圖3-12 記錄器 41
圖3-13 彩色高速攝影機 42
圖3-14 標準溫度計 43
圖3-15 平板型脈衝式熱管可視化與性能測試系統示意圖 46
圖3-16 平板型脈衝式熱管可視化與性能測試平台 46
圖3-17 性能測試實驗流程圖 50
圖3-18 穩態溫度示意圖 51
圖3-19平板型脈衝式熱管系統總熱阻計算示意圖 53
圖4-1 可視化平板型脈衝式熱管之熱電偶埋設位置 55
圖4-2 FR=0%之溫度變化 58
圖4-3 FR=40%之溫度變化 58
圖4-4 FR=50%之溫度變化 59
圖4-5 FR=60%之溫度變化 59
圖4-6 FR=70%之溫度變化 60
圖4-7 非均勻流道各填充率於水平之熱阻比較 62
圖4-8 平板型PHP彎道編號 63
圖4-9 FR40%各熱負載之流譜 60
圖4-10 FR40%與0%之熱阻比較圖 66
圖4-11 FR50%各熱負載之流譜 67
圖4-12 FR50%熱負載50W兩項流振盪之流譜 68
圖4-13 FR50%與0%之熱阻比較圖 70
圖4-14 FR 60%在10W之流譜 73
圖4-15 FR60%熱負載60W兩項流振盪之流譜 74
圖4-16 FR60%與0%之熱阻比較圖 78
圖4-17 FR70%各熱負載之流譜 79
圖4-18 FR70%與0%之熱阻比較圖 81
圖4-19 非均勻流道各熱負載對系統總熱阻關係圖 82
圖4-20 FR40%, =0°之熱負載對溫度關係圖 84
圖4-21 FR40%各熱負載之流譜 85
圖4-22 FR50%, =0°之熱負載對溫度關係圖 87
圖4-23 FR50%各熱負載之流譜 88
圖4-24 FR60%, =0°之熱負載對溫度關係圖 90
圖4-25 FR50%各熱負載之流譜 91
圖4-26 FR70%, =0°之熱負載對溫度關係圖 93
圖4-27 FR70%各熱負載之流譜 94
圖4-28 均勻流道各填充率於水平之熱阻比較 96
圖4-29 FR40%,各操作角度在不同熱負載下之系統總熱阻 98
圖4-30 FR50%,各操作角度在不同熱負載下之系統總熱阻 98
圖4-31 FR60%,各操作角度在不同熱負載下之系統總熱阻 99
圖4-32 FR70%,各操作角度在不同熱負載下之系統總熱阻 99
圖4-33 FR40%,各操作角度在不同熱負載下之系統總熱阻 100
圖4-34 FR50%,各操作角度在不同熱負載下之系統總熱阻 101
圖4-35 FR60%,各操作角度在不同熱負載下之系統總熱阻 101
圖4-36 FR70%,各操作角度在不同熱負載下之系統總熱阻 102
圖4-37 30度,各填充率在不同熱負載下之系統總熱阻 104
圖4-38 60度,各填充率在不同熱負載下之系統總熱阻 104
圖4-39 90度,各填充率在不同熱負載下之系統總熱阻 105
圖4-40 30度,各填充率在不同熱負載下之系統總熱阻 106
圖4-41 60度,各填充率在不同熱負載下之系統總熱阻 107
圖4-42 90度,各填充率在不同熱負載下之系統總熱阻 107
參 考 文 獻
[1]R. S. Gauger, “Heat Transfer Devices,” U.S. Patent 2, 350, 348, 1944.
[2]G. M. Grover, “U.S. Patent No. 3229759,” 1963.
[3]http://www.intel.com/
[4]H. Akachi, “U.S. Patent No. 4921041,” 1990.
[5]Suo, M., Griffith, P., “Two-Phase Flow in Capillary Tubes,” Transactions of the ASME, pp. 576-582, September, 1964.
[6]H. Akachi, “U.S. Patent No. 5219020,” 1993.
[7]H. Akachi, “Looped Capillary Heat Pipe,” Japanese Patent, 1994, No. Hei6-97147.
[8]H. Akachi, F. Polasek, and P. Stulc, “Pulsating Heat Pipe,” Proc. 5th Int. Heat Pipe Symposium, Melbourne, Australia, 1996., pp. 208-217.
[9]H. L. Wook, S. J. Hyun, H. K. Jong, “Flow Visualization of Oscillating Capillary Tube Heat Pipe,” 11th International Heat Pipe Conference, Japan, Vol. 2, pp. 166-169, 1999.
[10]K. Gi, F. Sato, S. Meazawa, “Flow Visualization Experiment on Oscillating Heat Pipe,” 11th International Heat Pipe Conference, Japan, Vol. 2, pp. 149-153, 1999.
[11]W. Lee, H. Jung, H. S., and Kim, J. S., “Flow Visualization of Oscillating Tube Heat Pipe,” Proc. Of the 11th Int. Heat Pipe Conf., Japan Association for Heat Pipes, Tokyo, Japan, 99.131-136, 1999.
[12]M. Hosoda, S. Nishio, R. Shirakashi, “Study of Meandering Closed-Loop Heat-Transport Device,” JSME Int. J., Vol. 42/4, pp. 737-744, 1999.
[13]S. Nagata, R. Shirakashi, S. Nishio, “Closed-Loop Heat-Transport Tube,” 第三十六回日本熱傳演講論文集, pp. 675-676, 1999.
[14]M. Misale, M. Forgheri, “ Influence of Pressure Drops on the Behavior of a Single-Phase Natural Circulation Loop : Preliminary Results,” Int. Co mm. Heat and Mass Transfer, Vol. 41, No. 8-9, pp. 1075-1086, 1999.
[15]M. Groll, et al., “Visualization of Thermofluiddynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipes,” Proc. 6th Int. Heat Pipe Symposium, Chiang Mai, 2000.
[16]S. Khandekar, and M. Groll, “Thermofluiddynamic Study of Flat Plate Closed Loop Pulsating Heat Pipes,” Microscale Thermophysical Engineering, Taylor and Francis, ISSN 1089-3954, Vol.6, No. 4, pp. 303-318, 2002.
[17]S. Meazawa, “Heat Pipe : Its Origin, Development and Present Situation,” Proceeding of the 6th Int. Heat Pipe Sym. Chiang Mai, 2000.
[18]B. Tong, T. Wong, and K. Ooi, “Closed-Loop Pulsating Heat Pipe,” Applied Thermal Engineering, Vol. 21, pp.1845-1862, 2001.
[19]S. Nishio, “Thermal Performance of SEMOS Heat Pipes,” Proc. 12th Int. Heat Transfer Conf., Grenoble, France, ISBN 2-84299-307-1 pp. 477-482, 2002.
[20]S. Khandekar, M. Schneider, and M. Groll, “Mathematical Modeling of Pulsating Heat Pipes : State of the Art and Future Challenges,” Proc. 5th ASME/ISHMT Joint Int. Heat and Mass Transfer Conf., Tata McGrew Hill, Kolkata, ISBN-0-07-047443-5, pp. 856-862, 2002.
[21]M.Groll, et al., “Pulsating Heat Pipes : Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon,” Proc. 12th Int. Heat Transfer Conf., Grenoble, 2002.
[22]S. Khandekar, X. Cui, and M. Groll, “Thermal Performance Modeling of Pulsating Heat Pipes by Artificial Neural Network,” Proc. 12th Int. Heat Pipe Conf., Moscow, pp. 215-219, 2002.
[23]M. Groll, and S. Khandekar, “Pulsating Heat Pipes : A Challenge and Still Unsolved Problem in Heat Pipe Science,” Archives of Thermodynamics, Begell House, ISBN 1231-0956, Vol. 23/4, pp. 17-28, 2002.
[24]S. Khandekar, et al., “Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes,” Microscale Thermophysical Engineering 6 (4), pp. 303-317,2002.
[25]S. Khandekar, M. Groll, “Understanding Operational Regimes of Pulsating Heat Pipes : An Experimental Study,” Applied Thermal Engineering, Elsevier Science, Vol. 23, No. 6, pp. 707-719, 2003.
[26]M. Groll, et al., “Closed Loop Pulsating Heat Pipes-Part A: Parametric Experimental Investigations, ” Applied Thermal Engineering, Elsevier Science, ISSN 1359-4311,2003.
[27]M. Groll, et al., “Closed Loop Pulsating Heat Pipes-Part B: Visualization and Semi-Empirical Modeling,” Applied Thermal Engineering, Elsevier Science, ISSN 1359-4311,2003.
[28]M. Groll, and S. Khandekar, “Pulsating Heat Pipes: Progress and Prospects,” Proc. 3th Int. Conf. On Energy and Environment, Shanghai, 2003.
[29]S. Khandekar, M. Groll, “On the Definition of Pulsating Heat Pipes : An Overview,” Proc. 5th Minsk Int. Seminar, Minsk, Belarus, 2003.
[30]Zhang, X.M., Xu, J.L. ,and Zhou, Z.Q.“Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids,”Experimental Heat Transfer 17 (1), pp. 47-67,2004.
[31]S. Khandekar, M. Groll, “Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes,” Proc. Of the 13th International Heat Pipe Conf., China, Shanghai, pp. 291-297, 2004.
[32]林益邦,「脈衝式熱管之製造與測試」,碩士論文,國立台北科技大學,2004。
[33]S. Khandekar, M. Groll “An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes,” International Journal of Thermal Sciences 43 (1), pp. 13-20, 2004.
[34]Zhang, X.M., Xu, J.L.“Start-up and steady thermal oscillation of a pulsating heat pipe,” Heat and Mass Transfer/Waermeund Stoffuebertragung 41 (8), pp. 685-694,2005.
[35]J. L. Xu, et al., “High Speed Flow Visualization of a Closed Loop Pulsating Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 3338-3351, 2005.
[36]H. Yang, S. Khandekar and M. Groll, “Operational limit of closed loop pulsating heat pipes,” Applied Thermal Engineering 28 (1), pp. 49-59, 2007.
[37]H. Yang, S. Khandekar and M. Groll, “Performance characteristics of pulsating heat pipes as integral thermal spreaders,” International Journal of Thermal Sciences, 2008.
[38]R. Dobson, T. and Harm, T. M., “Lumped Parameter Analysis of Closed and Open Oscillatory Heat Pipes,” 11th Int. Heat Pipe Conf., Tokyo, 12-16 Sept., 1999.
[39]Rittidech, S., Terdtoon, P., Murakami, M., Kamonpet, P., Jompakdee, W., “Correlation to Predict Heat Transfer Characteristics of a Closed-end Oscillating Heat Pipe at Normal Operating Condition,” Applied Thermal Engineering, pp.497-510, 2003.
[40]Schneider, M., Khandekar, S., Schäfer, P., Kulenovic, R., and Groll, M., “Visualisation of Thermofluid-dynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipes,” Proceedings of the 6th International Heat Pipe Symposium, Chiang Mai, Thailand, pp.5-9, November, 2000.
[41]Collier, John G., “Convective Boiling and Condensation,” McGraw-Hill, 1981.
[42]陳聖文,「平板型閉迴路脈衝式熱管性能之研究」,碩士論文,國立清華大學,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top