跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉育瑋
研究生(外文):Yu-Wei Liu
論文名稱:頭部外傷患者自主神經活性評估之臨床應用
論文名稱(外文):Clinical Application of Autonomic Nerve System Activity Analysis in Traumatic Brain Injury
指導教授:謝建興
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:62
中文關鍵詞:頭部外傷自主神經活性異常自主神經系統活性心率變異度去趨勢波動分析法碎形重度昏迷預後
外文關鍵詞:Traumatic brain injuryAutonomic dysfunction syndromeActivity of autonomic nervous systemDetrended fluctuation analysisHeart rate variabilityFractalHeavy comaPrognosis.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
根據統計,有15-33%的嚴重頭部外傷患者會合併發生自主神經活性異常。他們的臨床表現為高燒、心跳快、血壓高、呼吸急促、肌肉張力異常、盜汗、腦壓上升等。這對一剛受傷的腦來說,很容易再造成二次傷害,而增加了罹病率與死亡率。及早的臨床評估且完善的醫療照護,是決定神經重症病患對於預後的重要因素。要達到這樣的目標,首先,必須要有完善的神經重症監測系統。
本研究將結合工程分析理論與頭部外傷臨床照護兩大領域,以目前加護病房中現有的頭部外傷監測系統為基礎,建立一非侵入式頭部外傷患者自主神經活性評估系統。研究中將採用受測者心電圖訊號,結合心率變異度與去趨勢波動分析法,利用不同尺度來觀察訊號在碎形特性上變化的結果,評估自主神經系統之活性。
本研究首先針對正常人族群進行試驗性研究,探討正常人在各外來刺激影響下自主神經活性之變化,目的在於幫助自主神經活性評估指標之測試與建立。研究後期我們將進一步選擇重度昏迷且神經反射功能喪失之嚴重頭部外傷患者進行資料收集與分析,利用神經評估指標探討嚴重頭部外傷患者於病程中自主神經活性之變化,並比對臨床相關因子間關聯性,藉以評估患者對臨床治療的反應。最後。期盼未來可依此非侵入自主神經活性評估系統指導頭部外傷患者臨床照護工作的進行,預測預後,提高醫療品質與病患安全。
Autonomic dysfunction syndrome (ADS) is reported in 15-33% of cases after severe traumatic brain injury (TBI). The clinical manifestations consist of fever, tachycardia, hypertension, tachypnea, dystonia, diaphoresis, increased intracranial pressure (IICP), etc. The vulnerable injured brain is easy to suffer from the secondary injury resulting from ADS in the acute stage. Increased morbidity and mortality are usually associated. Timely clinical assessment and fine critical care are crucial to the prognosis, and this should be proceeded aggressively under careful monitoring.
By joining the engineering technique and clinical medical care system together, this study is aimed to establish an autonomic nerval monitoring system based on the currently-used monitoring in the intensive care unit (ICU) for TBI patients. In this study, we choose the electrocardiogram, and apply the analytic algorithms of detrended fluctuation analysis (DFA) in heart rate variability analysis (HRV). With the characteristic of fractal and self-similarity, the activity of the autonomic nervous system could be assessed.
In order to help to test and establish the index of autonomic nervous system (ANS), we apply the data recorded from normal subjects to investigate the ANS activity with different influence of external stimulations on the beginning stage of this study. On the second stage of this study, we further choose the severe TBI patients who are under heavy coma and lose the function of ANS as material for this investigation, and assess the activity of ANS along the treatment course for the severe TBI patients via the ANS index. Moreover, we observe the relationship between the activity of ANS and clinical condition. By the information derived in this study, we wish to predict prognosis and monitor the patients’ response to the therapeutic intervention. Finally, we hope this monitoring system would deliver the information to guide the clinicians to predict outcome and make treatment plan for the clinical care. Therefore, the patients’ safety and the quality of clinical cares are enhanced.
Front cover i
Title Page ii
審定書 iii
授權書 iv
中文摘要 v
Abstract vi
誌謝 vii
Content viii
List of Figure ix
List of Table xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Review of Studies 9
1.3 Purpose 11
1.4 Brief summary of chapters 12
Chapter 2 Analysis Algorithm 14
2.1 Detrended Fluctuation Analysis ……...….………………………..…………..14
Chapter 3 Experiment Conditions and Method 19
3.1 Choice of Materials 19
3.2 Data Collection Process 21
3.3 Process of Data Analysis 24
3.4 Experiment Equipments 26
Chapter 4 Results 30
4.1 Materials 30
4.2 Experiment Design 31
4.3 Analysis results 36
Chapter 5 Conclusions and Discussion 56
5.1 Conclusions 56
5.2 Discussion 57
References 58
References
[1]Langley JN. The autonomic nervous system. Brain 26, 1-26 (1903).
[2]Andrews K. International working party on the management of the vegetative state. Brain Inj; 10:797–806 (1996).
[3]Fischer C, Luaute´ J. Evoked potentials for the prediction of vegetative state in the acute stage of coma. Neuropsychol Rehabil; 15:372–80 (2005).
[4]Fischer C, Luaute J, Adeleine P, Morlet D. Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology; 63:669–73 (2004).
[5]Gue´rit JM, de Tourtchaninoff M, Soveges L, Mahieu P. The prognostic value of three-modality evoked potentials (TMEPs) in anoxic and traumatic comas. Neurophysiol Clin; 23:209–26 (1993).
[6]Kane NM, Butler SR, Simpson T. Coma outcome prediction using eventrelated potentials: P3 and mismatch negativity. Audiol Neurootol; 5:186–91 (2000).
[7]Wardlaw JM, Easton VJ, Statham P. Which CT features help predict outcome after head injury? J Neurol Neurosurg Psychiatry; 72:188–92 (2002).
[8]Buchman TG. The community of the self. Nature; 420(6912):246-51 (2002).
[9]Buchman TG, Stein PK, Goldstein B. Heart rate variability in critical illness and critical care. Curr Opin Crit Care; 8(4):311-5, August 2002.
[10]Rabinstein AA. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit. Neurol Res; 29(7):680-2, Oct 2007.
[11]Baguley IJ, Nicholls JL, Felmingham KL. Dysautonomia after traumatic brain injury: a forgotten syndrome?. J Neurol Neurosurg Psychiatry; 67(1):39-43, Jul 1999.
[12]Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation; 93(5):1043-65 (1996).
[13]Hon EH, Lee ST. Electronic evaluations of the fetal heart rate patterns preceding fetal death, further observations. Am J Obstet Gynec; 87: 814–26 (1965).
[14]Sayers BM. Analysis of heart rate variability. Ergonomics; 16: 17–32 (1973).
[15]Hirsh JA, Bishop B. Respiratory sinus arrhythmia in humans; how breathing pattern modulates heart rate. Am J Physiol; 241: H620–9 (1981).
[16]Ewing DJ, Martin CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetic Care; 8: 491–8 (1985).
[17]Wolf MM, Varigos GA, Hunt D, Sloman JG. Sinus arrhythmia in acute myocardial infarction. Med J Australia; 2 52–3 (1978).
[18]Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science; 213: 220–2 (1981).
[19]Kleiger RE, Miller JP, Bigger JT, Moss AJ. and the Multicenter Post-Infarction Research Group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol; 59: 256–62 (1987).
[20]Bigger JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation; 85: 164–71 (1992).
[21]Pomeranz M, Macaulay RJB, Caudill MA. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol; 248: H151–3 (1985).
[22]Pagani M, Lombardi F, Guzzetti S. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res; 59: 178–93 (1986).
[23]Hopman JCW, Kollee LAA, Stoelinga GBA, van Geijn HP, and van Ravenswaaij-Arts CMA. Heart rate variability. Annals of Internal Medicine, 118, 436–447 (1993).
[24]Kawamoto M, Tanaka N, Takasaki M. Power spectral analysis of heart rate variability after spinal anesthesia. Br. J. Anaesth; 71:523-7 (1993).
[25]D''Addio G, Pinna GD, La Rovere MT, Maestri R, Furgi G and Rengo F, “Prognostic value of Poincare´ plot indexes in chronic heart failure patients”, Computers in Cardiology, Vol 28, pp:57-60 (2001).
[26]Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK. Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A; 99 Suppl 1:2466-72 (2002).
[27]Peng CK, Havlin S, Stanley HE and Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5 82–7 (1995).
[28]Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev E; 49:1685–9 (1994).
[29]Tulppo MP, Kiviniemi AM, Hautala AJ. Physiological background of the loss of fractal heart rate dynamics. Circulation; 112:314–9 (2005).
[30]Mourot L, Bouhaddi M, Gandelin E, Cappelle S, Nquyen NU, Wolf JP, Rouillon JD, Hughson R, Reqnard J. Conditions of autonomic reciprocal interplay versus autonomic co-activation. Autonomic Neuroscience: Basic and Clinical 137 (2007).
[31]Mäkikallio TH, Hojberg S, Kober L, Torp-Pedersen C, Peng CK, Huikuri HV. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. Am J Cardiol; 83:836–9 (1999).
[32]Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M. DIAMOND Study Group. Fractal correlation properties of R–R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation; 101:47–53 (2000).
[33]Rodriguez E, Echeverria JC, Ramirez JA. “Detrending fluctuation analysis based on high-pass filtering,” Physica A; 375:699-708 (2007).
[34]Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng CK. “Fractal dynamics in physiology: Alterations with disease and aging,” Proceedings of the National Academy of Science; 99: 2466-2472 (2002).
[35]Peng CK, Hausdorff JM, & Goldberger AL. in Nonlinear Dynamics, Self-Organization, and Biomedicine, ed. Walleczek, J. (Cambridge Univ. Press, Cambridge, U.K.), pp. 66–96 (2000).
[36]Iyengar N, Peng CK. Age related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol 271:R1078 (1996).
[37]Makikallio TH, Ristimae T, Airaksinen KEJ, Peng CK, Goldberger AL. and Huikuri HV. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am. J. Cardiol. 81: 27-31 (1998).
[38]Mäkikallio TH, Seppänen T, Airaksinen KEJ Koistinen J. Tulppo M., Peng CK, Golgberger AL, Huikuri HV.: Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol, 80:779-783 (1997).
[39]Menrad A. “Dual microprocessor system for cardiovascular data acquisition, processing and recording.”, in Proc. 1981 IEEE Inr.Con5 Industrial Elect. Contr. Instrument., pp: 64-69 (1981).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊