跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜承洋
研究生(外文):Cheng-Yang Tu
論文名稱:7075-T6鋁合金經微弧氧化處理後之疲勞特性
論文名稱(外文):Fatigue behavior of 7075-T6 aluminum alloy by micro-arc oxidation
指導教授:邱傳聖邱傳聖引用關係
指導教授(外文):Chuan-Sheng Chiou
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:7075微弧氧化處理應力集中S-N曲線圖
外文關鍵詞:7075-T6MAOStress ConcentrationS-N curve
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微弧氧化處理技術是一新興的電化學表面處理技術,適合用來處理鋁、鎂、鈦等輕金屬合金。藉著在水溶液中的電弧放電所產生的表面電漿及短暫高溫,對基材表面進行電漿氧化及高溫熔融,使得所形成的覆膜具備極高的硬度與抗蝕性。本實驗主要是探討7075-T6鋁合金經過微弧氧化處理後,顯微結構的變化對疲勞破壞方式的影響。實驗結果顯示經微弧氧化處理後,由於其基材靠近與塗層內部之介面處較易產生應力集中之現象,因而造成疲勞強度之縮減。
Micro-arc oxidation (MAO) is a new electrochemical surface treatment technology, suitable for treating the aluminum, magnesium, titanium and other light metal alloys. In aqueous solution by the arc discharge plasma generated by the surface and short-term high temperature plasma on the surface of the substrate oxidation and high temperature melting, the film were formed with high hardness and corrosion resistance. The aim of this research was mainly to observe the fatigue behavior and the morphology of fracture surface of 7075-T6 aluminum alloy with and without MAO. Due to the coating into substrate near the interface, which are considered as the notch sites of stress concentration to induce the crack initiation. The fatigue characteristics was inferior to that of original Al 7075 without MAO.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 2
2-1鋁合金 2
2-1.1鋁合金材料特性簡介 2
2-1.2鋁的晶格結構 2
2-1.3 鋁合金之分類 3
2-1.4 7075-T6鋁合金 4
2-1.5 熱處理 5
2-2 傳統表面改質技術 7
2-2.1 一般性陽極處理 7
2-2.2 硬膜性陽極處理 8
2-3 新式表面改質技術 8
2-3.1 微弧氧化處理處理簡介 8
2-3.2 微弧氧化處理原理 9
2-3.3 微弧氧化處理於鋁合金之應用 10
2-4 拉伸試驗 11
2-5 高週疲勞試驗 12
2-5.1 疲勞破壞簡介 12
2-5.2 疲勞破壞之形貌特徵 12
2-5.3 疲勞應力分析 15
2-5.4 影響疲勞強度之因素 18
2-6 表面改質後之疲勞特性 19
第三章 實驗方法 33
3-1實驗設計與流程 33
3-2實驗材料 33
3-2.1實驗試片規格 33
3-3 實驗儀器 34
3-3.1 MTS 810動態材料試驗機 34
3-3.2 場發射掃描式電子顯微鏡(SEM) 35
3-4 實驗步驟 35
3-4.1 MTS 810動態材料試驗機操作流程簡介 37
第四章 結果與討論 46
4-1 微弧氧化(MAO)處理分析 46
4-1.1 正電壓負載時間不變,負電壓負載時間上升 46
4-1.2 負電壓負載時間不變,正電壓負載時間上升 47
4-1.3 MAO頻率之改變 48
4-2 疲勞試驗 49
4-2.1 試片選擇之條件分析 49
4-2.2 試片拉伸試驗分析 49
4-2.3 MTS 810動態材料試驗機設定分析 50
4-2.4 S-N曲線分析 51
4-3 顯微結構分析 52
4-3.1 7075-T6鋁合金原材疲勞裂縫成長與破壞分析 52
4-3.2 7075-T6鋁合金經MAO後疲勞裂縫成長與破壞分析 53
4-4 陽極處理與微弧氧化處理之比較 53
第五章 結論 76
參考文獻 78
1.劉火欽, “金屬材料”, 三民書局股份有限公司, 237-238頁, 民國80年。
2.R. W. Cahn and P. Haasen, “Crystal Structures of The Metallic Elements”, Physical Metallurgy, Third revised and enlarged edition, pp. 50-60, 1983.
3.Robert E. Reed-Hill, “Slip System in Different Crystal Forms”, Physical Metallurgy Principles, 3th Edition, pp.140-146,1994.
4.黃振賢, “機械材料”, 新文京開發出版股份有限公司, 344頁, 民國94年。
5.黃振賢, “金屬熱處理”, 新文京開發出版股份有限公司, 136~143頁, 543-555頁, 民國82年。
6.J. R. Davis, associates “Aluminum and Aluminum alloys“, ASM specialty handbook, pp. 290-327 , 2002.
7.Gurbuz R, Alpay S.P., “Effect of coarse second phase particle on fatigue crack propagation of an Al-Zn-Mg-Cu alloy”, Scripta Metallurgica et Material, V30 n11, pp.1373-1376, 1944.
8.Mun-Yong Lee , Sung-Man Sohna, Chang-Yong Kang , Dong-Woo Suhc, Sang-Yong Lee , “Effects of pre-treatment conditions on warm hydroformability of 7075 aluminum tubes“, Journal of Materials Processing Technology, 155-156, pp. 1337-1343, 2004.
9.Bin-Lung OU, Ji-Gang Yang, and Mon-Yu Wei “Effect of homogenization and aging treatment on mechanical properties and stress-corrosion cracking of 7050 alloys“, Metallurgical and Materials Transactions A, 38A, pp. 1760-1773, 2007.
10.Z.M. EI-Baradie, M. EI-Sayed “Effect of double thermomechanical treatments on the properties of 7075 A1 alloy“, Journal of Materials Processing Technology, 62, pp. 76-80 , 1996.
11.M. Arshad Choudhry , Muhammad Ashraf , “Effect of heat treatment and stress relaxation in 7075 aluminum alloy“, Journal of Materials Processing Technology, 437, pp. 113-116, 2007.
12.D.McDonald and P.Bulter, “The Thermodynamics of the Aluminum-Water System at Elevated Temperatures” ,Corrosion Science, Vol.13, pp. 259-274, 1973
13.Charles A. Grubbs, “Anodizing of aluminum”, Metal Finishing, Vol. 105, Issue 10, pp. 397-412, 2007.
14.A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, “Review Plasma electrolysis for surface engineering”, Journal of Surf. Coat. Technol. 122, pp. 73-93, 1999.
15.G.A. Markov, G.V. Markova, USSR Patent 526,961, Bul. Inv. 32, 1976.
16.P. Kurze, W. Krysmann, G.Marx, Z. Wiss, Tech. Hochsch.Karl-Marx-Stadt 24, pp. 139, 1989.
17.James A. Curran, Peterhouse, “Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings”, department of materials science and Metallurgy, university of Cambridge, 2005.
18.ASM, “Introduction to Tensile Testing”, Metals Handbook 8th Edition,
Vol.8, 1976.
19.陳永增,鄧惠源, “機械材料試驗”, 高立出版社, 台北, 83-98頁, 民國86年。
20.Robert E. Reed-Hill, “The Rotating-Beam Fatigue Test”, Physical Metallurgy Principles, 3th Edition, pp. 750-752, 1994.
21.M. Klesnil, P. Lukas, “Sites of Crack Initiation”, Fatigue of Metallic Materials, Second Revised Edition, pp. 67-70, 1992.
22.Robert E. Reed-Hill, “The Microscopic Aspects of Fatigue Failure”, Physical Metallurgy Principles, 3th Edition, pp. 755-760, 1994.
23.Robert E. Reed-Hill, “The Plastic Zone Size Ahead of A Crack”, Physical Metallurgy Principles, 3th Edition, pp. 792-795, 1994.
24.M. Klesnil, P. Lukas, “Kinetics of Crack Growth”, Fatigue of Metallic Materials, Second Revised Edition, pp. 92-97, 1992.
25.C. Laird, “ Fatigue Crack Propagation”, ASTM. STP 415, ASTM, Philadelphia, pp. 131, 1967.
26.林樹均,葉均蔚,劉增豐,李勝隆, “材料工程實驗與原理”, 全華科技圖書股份有限公司, 111-120頁, 民國88年。
27.J.A.Bannantine, J.J.Comer, J.L.Handrock, “Fundamentals of Metal Fatigue Analysis”, 1990.
28.E.Zahavi, “Fatigue Design”, pp. 41-181, 1996.
29.劉國雄,鄭晃忠,李勝隆,林樹均,葉均蔚,“工程材料科學” ,全華科技圖書股份有限公司,pp. 204-219,民國95年。
30.Y.M. Wang, P.F. Zhang, L.X. Guo, J.H. Ouyang, Y. Zhou, D.C. Jia, “Effect of microarc oxidation coating on fatigue performance of Ti–Al–Zr alloy”, Applied surface science 255, pp.8616-8623, 2009.
31.B. Lonyuk, I. Apachitei, J. Duszczyk, “The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy”, Journal of Surface & Coatings Technology, 201, pp. 8688-8694, 2007.
32.B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, S.V. Joshi, G. Sundararajan, “Influence of microarc oxidation and hard anodizing on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy”, Surface and Coatings Technology, Volume 202, Issue 8, 15, pp. 1462-1469, 2008.
33.ASTM, “Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials”, ASTM E466-07, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top