跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱柏翔
研究生(外文):Po-Shiang Chiou
論文名稱:強化表面黏著電子構裝元件抗振特性之設計方案研究
論文名稱(外文):Design for the Enhancement of Anti-vibration Characteristics of Surface Mount Type Electronic Components
指導教授:陳永樹陳永樹引用關係
指導教授(外文):Yeong-Shu Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:102
中文關鍵詞:球柵陣列封裝可靠度表面黏著抗振動微衛星
外文關鍵詞:Ball Grid Array PackagingReliabilitySatelliteSpaceAnti- Vibration
相關次數:
  • 被引用被引用:3
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電子元件封裝之發展,過去由穿孔式(Plated Through-hole Type-PTH)元件演變至今,表面黏著式(Surface Mount Type-SMT)等已佔大宗,其中球柵狀陣列式構裝BGA(Ball Grid Array)更是主流。然而,在振動環境如汽車、軍事、太空衛星上之應用,仍以可靠度較高之穿孔式電子元件為主。但是使用穿孔式元件,在封裝時必須有導線架(Lead Frame);同時,元件於安裝時,電路板上對應也需鑽微孔。因此,是耗時、耗成本的製程。表面黏著之BGA元件省去上述製程,又提供為數較多之接腳。因此,現已是廣泛應用於最新微小化趨勢下之主流元件如覆晶(Flip-chip)、晶片尺寸(Chip Scale Package - CSP)與晶圓級晶片構裝(Wafer-level CSP)等。礙於這些新式構裝元件之振動可靠度不如穿孔式元件,造成應用上之缺憾。所以,本將針對此問題加以設計改善。
研究發現BGA元件在振動環境下測試,其所損壞之錫球皆為角落之錫球。因而,有些研究將角落錫球加以改變,設計成較大顆之錫球,有些則將之改為錫柱,以能承受較大之應力,或甚至故意擺放一顆單純只用來承受應力之無訊號傳遞功能的錫球。凡此種種設計,在製程上都必須特別處理。如此不但成本增加,且為了少數元件之抗振設計,整個生產製程必須做變動,顯然不是經濟有效之對策。本研究則將利用加強肋與彈性加強片設計,可以增加元件構裝整體之剛性,且抑制電路板之振動變形模態。而彈性加強片之置入,增加了其與晶片背面之接觸壓力,以熱傳觀點而言,增加接觸壓力會大幅改善散熱效果。
本研究所設計之封裝元件,將具備抗振動與散熱改善功能。具體而言,可應用於國內亟待大力發展之汽車電子、以及國家太空科技發展的微衛星之電子元件所需。對產業既有電子產品之擴大應用層面,將有絕對之助力。
The technology of electronic packaging has evolved from the traditional pin-through-hole(PTH) type into the concurrent surface mount type. Among the latter, ball grid array (BGA) probably dominates the current packaging electronic products. However, under the vibration environments, such as those in the automotive, military, and space industry applications, the PTH products are still chosen as the sole source for the severe vibration environment use. Nevertheless, they have to come with the lead-frame during the packaging processes as well as the requirement of hole-drilling on the printed circuit boards when mounting. These processes are time-consuming and cost intensive. Conversely, the BGA components don’t have to go through the forgoing processes while offering more input/output counts on a single package. It is overwhelmingly used for the new miniaturized electronic components such as flip-chip, chip scale package, and wafer level package. Because BGA’s perform not so well in the vibration environment comparing with those PTH’s, it has limited use in severe vibration conditions. This problem has been set as the goal in this study to solve by having a new design to improve it.
The past research in literatures has shown that the corn solder balls are always failed firstly during the vibration test. Accordingly, some of the designs by enlarging the corner solder balls, or changing them into solder column, or putting dummy solder balls at each corner of the solder balls array to withstand the vibration stresses. Nevertheless, those measures all required major change in the processes thus increasing the manufacturing cost dramatically. Accordingly, this study developed some design improvements on the package for enhancing the anti-vibration characteristics of BGA components. The first improvement was a new design on the existing heat spreaders of the current BGA’s. It changed the contour of the current rectangular heat spreader by including extrusions at each of the four corners to sustain the stresses. Meanwhile, other designs were one with a surface-mountable type square bar and the other with mounting brackets along one of the two opposite edges of the component. A spring metal sheet will be designed and clicked at the bar center for increasing the stiffness and improving the contact pressure while also serving as the heat conducting device(heat spreader). All the effects of these designs were verified experimentally with the sinusoidal and random vibration tests.
The new design not only can resist the vibration induced stresses, it can also improve the functions of current heat spreader by increasing the contact pressure. It can be used for the automotive electronics and the space electronics especially for the miniaturized satellite space program.
摘 要 i
ABSTRACT iii
致謝 v
目 錄 vi
表目錄 viii
圖目錄 ix
符號說明 xvi
第1章 緒論 1
1.1前言 1
1.2 研究背景與目的 2
1.3 文獻回顧 9
第2章 基礎理論 13
2.1 隨機振動理論 13
2.2 隨機振動機率分布 18
2.3 阻尼系統 21
2.3.1 庫倫阻尼 22
2.3.2 黏滯阻尼 23
2.3.3 結構阻尼 24
第3章 動態環境下表面黏著電子元件抗失效設計 26
3.1 現有外加之抗振動元件 29
3.1.1楔形鎖條 29
3.1.2 加強肋 32
3.1.3 彈性阻尼裝置 35
3.2 抗振動設計 37
第4章 實驗方法 45
4.1 自然頻率量測 45
4.1.1量測系統架設 45
4.1.2 量測結果 48
4.2 隨機振動測試 49
4.2.1 隨機振動測試標準 49
4.2.2 隨機振動實驗 52
4.3 四點彎曲測試 65
第5章 有限元素分析 72
5.1實驗樣本尺寸 72
5.2有限元素模型建立 73
5.3 自然頻率分析 78
5.4 隨機振動分析 80
5.5 四點彎曲分析 84
5.6 彈片接觸壓力與熱傳導關係 86
第6章 結果討論 92
6.1 實驗與分析結果討論 92
6.1.1隨機振動試驗與分析比較 92
6.1.2 四點彎曲循環試驗 95
6.2 未來展望 97
參考文獻 98
參考文獻
[1]Shaw Fong Wong, Pramod Malatkar, Canham Rick, Vijay Kulkarni and Ian Chin "Vibration Testing and Analysis of Ball Grid Array Package Solder Joints," Electronic Components and Technology Conference, pp. 373-380, 2007.
[2]Filho W.C.A., Brizoux M., Fremont H., Danto Y., "Solder Joint Loading Conditions under Torsion Test," 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-6, 2006.
[3]王泰橋,「覆晶球柵陣列構裝於可靠度彎曲測試下之錫球裂縫長度與疲勞壽命關係性研究」,私立元智大學機械工程學系,碩士論文,民國95年。
[4]Xingsheng Liu, Shuangyan Xu, Guo-Quan Lu and David A. Dillard, "Stacked Solder Bumping Technology For Improved Solder Joint Reliability," Microelectronics Reliability, Vol.41, pp. 1979-1992, 2001.
[5]Reza Ghaffarian, "CCGA packages for space applications," Microelectronics Reliability, Vol. 46, pp. 2006-2024, 2006.
[6]Zhao Y., Basaran C., Carwright A. and Dishongh T., "Inelastic Behavior of Microelectronics Solder Joints Under Concurrent Vibration and Thermal Cycling," IEEE Inter Society Conference on Thermal Phenomena, pp. 174-180, 2000.
[7]Yang Q. J., Lim G. H., Lin R. M., Yap F. F., Pang H. l. J. and Wang Z. P., "Experimental Modal Analysis of PBGA Printed Circuit Board Assemblies," IEEE /CPMT Electronic Packaging Technology Conference, pp. 290-296, 1997.
[8]Yang Q. J., Lim G. H., Pang H. L. J. and Wang Z. P., "Vibration Reliability Test of a PBGA Assembly," IEEE/CPMT Electronic Packaging Technology Conference, pp. 258-263, 1998.
[9]Yang Q. J., Pang H. L. J., Wang Z. P., Lim G. H., Yap F. F. and Lin R. M.,"V ibration Reliability Characterization Of PBGA Assemblies,” Microelectronics Reliability, vol.40, pp. 1097-1107, 2000.
[10] Yang Q. J., Wang Z. P., Lim G. H., Pang H. L. J., Yap F. F. and Lin R. M., "Reliability of PBGA Assemblies Under Out-of-Plane Vibration Excitations," IEEE Transactions on Component and Packaging Technology, Vol. 25, No. 25, pp. 293-300, 2002.
[11]Dave S. Steinberg, Vibration Analysis for Electronic Equipment, Second Edition, John Wiley & Sons, New York, 1988.
[12]Hongfang Wang, Mei Zhao and Qiang Guo, "Vibration fatigue experiments of SMT solder joint," Microelectronics Reliability, Vol.44, pp. 1143-1156, 2004.
[13]Xia Liu, Valmiki K. Sooklal, Melody A. Verges and Michael C. Larson, "Experimental study and life prediction on high cycle vibration fatigue in BGA packages," Microelectronics Reliability, Vol.46, pp. 1128-1138, 2006.
[14]Y.S. Chen, C.S. Wang and Y.J. Yang, "Combining vibration test with finite element analysis for the fatigue life estimation of PBGA components," Microelectronics Reliability, Vol.48, pp.638-644, 2008.
[15]J. Lau, K. Gratalo, E. Schneider, T. Marcotte and T. Baker, "Solder Joint Reliability of Large Plastic Ball Grid Array Assemblies Under Bending, Twisting, and Vibration Conditions," Circuit World, Vol. 22, No. 1, pp. 27-32, 1995.
[16]T. T. Mattila, L. Suotula, and J. K. Kivilahti, "Replacement of the Drop Test with the Vibration Test– The Effect of Test Temperature on Reliability," Electronic Components and Technology Conference, pp. 629-637, 2008.
[17]Lee S. W. R. and Lui B. H. W., "Evaluation of Board Level Reliability of Pb-free PBGA Solder Joints," IEEE International Symposium on Advanced Packaging Materials, pp. 82-89, 2002.
[18]江孟儒,「高性能電子構裝之振動應力分析」,私立元智大學機械工程學系碩士論文,民國89年。
[19]Wong T. E., Reed B.A., Cohen H. M. and Chu D. W., "Development of BGA Solder Joint Vibration Fatigue Life Prediction Model," Electronic Components and Technology Conference, pp. 149-154, 1999.
[20] Wong, T. E., Palmieri F. W., Reed B. A., Fenger H. S., Cohen H. M. and Teshiba K.T., "Durability/Reliability of BGA Solder Joints under Vibration Environment," Electronic Components and Technology Conference, pp. 1083-1088, 2000.
[21]Wong T. E., Palmieri F. W. and Fenger H. S., "Under-Filled BGA Solder Joint Vibration Fatigue Damage," IEEE Inter Society Conference on Thermal Phenomena, pp. 961-966, 2002.
[22]Quinones H., Babiarz A., "Chip Scale Packaging Reliability," Int’l Symp on Electronic Materials & Packaging, pp. 398-405, 2000.
[23]林國鼎,「主機板承受隨機振動負載之疲勞壽命分析」,國立清華大學機械工程學系碩士論文,民國92年。
[24]http://zh.wikipedia.org/w/index.php?title=Image:Standard_deviation_diagram.svg&variant=zh-tw, 2008.
[25]鐘文仁、陳佑任,IC封裝製程與CAE應用,全華科技圖書股份有限公司,台北市龍江路,民國93年。
[26]S. Timoshenko and S. W. Krieger, "Theory of Planes and Shells," McGraw-Hill, 1959.
[27]曹健,「振動與陡震隔絕與控制」,機械月刊,十五卷第五期, 160~168頁,民國78年。
[28]田壁斌,「電腦中央處理器散熱器固定裝置之改良結構」,中華民國專利公報545629,民國92年。
[29]周志明,「中央處理器散熱模組之腳座結構」,中華民國專利公報M310360,民國96年。
[30]陳淑玲,「溫度效應對FCBGA在彎曲試驗下之疲勞壽命之影循環可靠度測試之適用性研究」, 私立元智大學機械工程研究所,碩士論文,民97年。
[31]JEDEC, "Vibration, Vibration Frequency," JEDEC Standard JESD22-B103-B, Solid State Technology Association, 2002.
[32]MIL-STD-810F, "Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests," Jan, 2000.
[33]IPC-9701, "Performance Test Methods and Qualification Requirements for Surface Mont Solder Attachments," Jan, 2002.
[34]鄭武輝,「無鉛銲錫成分與綠漆通孔尺寸對FCBGA 元件可靠度影響之研究」,私立元智大學機械工程研究所,碩士論文,民國95年。
[35]張乃建,「電子構裝散熱鳍片之性能分析」,私立元智大學機械工程研究所,碩士論文,民國91年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top