跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃郁淳
研究生(外文):Yu-Chun Huang
論文名稱:衝擊測試下餘震對電子構裝元件可靠度之影響研究
論文名稱(外文):Aftershock Effects on the Reliability of Electronic Components under Shock Test
指導教授:陳永樹陳永樹引用關係
指導教授(外文):Yeong-shu Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:衝擊試驗餘震可靠度衝擊響應譜
外文關鍵詞:AftershockFinite ElementReliabilityShockShock Response Spectrum
相關次數:
  • 被引用被引用:3
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
衝擊測試是電子產品可靠度測試的重點項目之一,一般的掉落衝擊測試依據JEDEC標準規範,如衝擊過程中必須符合規範中所定義之最大加速度值(Peak Acceleration)、衝擊作用時間(Pulse Duration)、速度改變量(Velocity Change)。然而實驗發現,掉落衝擊過程中往往不僅產生單一衝擊波,而是伴隨兩次或多次的餘震(Aftershock),但是這些餘震在測試過程中往往被忽略。因此,本研究主要針對衝擊餘震的產生及其影響,預估餘震所發生的時間及相對所產生加速度值大小。
在實驗部份,藉由改變實驗參數如掉落平台高度、底座膠塊材料性質或厚度…等等,量測掉落平台及電路板中間位置之加速度值。然後,擷取電路板加速度響應結果,以濾波方式將時域訊號響應轉換成頻域訊號響應,繪出衝擊響應譜(Shock Response Spectrum,SRS),並且與數值模擬結果做比對,以驗證實驗之準確性。
在有限元素分析部份係應用ANSYS-DYNA,分析之負載則使用目前廣泛應用的一種加速度邊界條件輸入法(Input-G Method),其為在電路板固定之支承點施予加速度負載,模擬時僅需建立電路板以及其上構裝體的模型,而不必考慮電路板掉落過程與導向桿(Guide Rod)之摩擦力以及碰撞面性質等因素。
在理論方面則針對三個連續衝擊波,利用實驗數據結合數值曲線擬合(Curve Fitting)的方式定義其數學模式。再將所定義之連續衝擊波代入單自由度質量-阻尼-彈簧系統求得系統之響應解,同時也利用有限元素分析求解以驗證理論之精確性。
本研究建立適用於電子元件之衝擊餘震理論準則,準確評估電子構裝元件受衝擊下之餘震之大小及發生的時間,期望對電子構裝元件之可靠度設計有所助益。
Shock test is one of the significant reliability tests for the electronics products. JEDEC test standard provides the guidelines for the circuit board shock (drop) test specifications. However, JEDEC test standards only regulate the first controlled-pulse by defining a variety of conditions such as the pulse peak acceleration, pulse duration and velocity change during the drop impact processes. In reality, a practical test showed that not only was one pulse produced, but also a series of two or more aftershocks are encountered. Hence, it is doubtful on whether and how the aftershocks influence results of components’ reliability. The purpose of this study is to investigate the aftershocks’ effect on the test products and to predict the time interval of its occurrence as well as the relating acceleration responses.
In the experimental part of the study, the accelerations both at the drop table and the middle of the print circuit board (PCB) tested were measured by varying those test parameters such as material types of rubber cushion, their thickness, and the drop table height,…etc. The shock response spectrum (SRS) was presented from filtering the time-domain data and transforming it into frequency domain data. The experimental results are then compared with the analyzed results for the verification purposes.
The finite element (FE) analysis model for drop test was also conducted by using ANSYS/LS-DYNA. The acceleration loadings are input to the test vehicle support by adopting the Input-G-Method. This method requires building the model of the test vehicle only whereas does not have to consider friction of the guide rod for the drop table and the cushion materials.
Meanwhile, the three aftershocks out of the test were also modeled with the mathematical equation from curve fitting. The results are taken as an input to a theoretical single degree of freedom (SDOF) system for solving the system’s responses. Meanwhile, all the results out of the SDOF system are also solved with the finite element analysis for verifying with the theoretical model.
The study conducted a theoretical work on the aftershock that occurs during the reliability test of electronic products. It can precisely examine the severity of aftershock and the time instant it happens. The corresponding results can be very helpful to improve the reliability of electronic component at the system design stage.
中文摘要 ...............................................ii
ABSTRACT ...............................................iv
誌 謝 ...............................................vi
目錄 ...............................................vii
表目錄 ...............................................x
圖目錄 ...............................................xi
符號說明 ...............................................xv
第1章 緒論...........................................1
1.1 前言...........................................1
1.2 研究動機與目的.................................2
1.3 文獻回顧 ......................................3
1.4 研究範疇 ......................................5
第2章 基礎理論 ......................................7
2.1 衝擊理論 ......................................7
2.2 單一衝擊波之響應 .............................10
2.2.1 Duhamel Integral Method ....................11
2.2.2 Laplace Transform Method ....................13
2.3 響應值的探討 .............................16
第3章 實驗方法 ......................................22
3.1 衝擊標準規範 .............................22
3.2 實驗儀器與設備 .............................25
3.3 實驗流程 ......................................27
3.4 實驗結果.......................................29
3.5 衝擊響應譜 .............................41
第4章 衝擊餘震分析 .............................46
4.1 衝擊餘震波形定義 .............................46
4.2 衝擊餘震響應值 .............................56
第5章 有限元素分析 .............................59
5.1 ANSYS/LS-DYNA .............................59
5.2 時間步驟控制(Time Step Control )...............61
5.3 Input-G Method .............................61
5.4 模型建構 .............................63
5.5 分析結果 .............................65
第6章 結果與討論 .............................69
6.1 實驗與理論的探討 .............................69
6.2 理論與有限元素分析的探討 ....................73
6.3 實驗與有限元素分析的探討 ....................73
參考文獻 ...............................................76
[1]陳君明,「TFT-LCD衝擊模擬分析及驗證研究」,國立中央大學機械工程研究所,碩士論文,2003。
[2]陳伯群,「TFT-LCD掉落模擬分析及驗證研究」,國立中央大學機械工程研究所,碩士論文,2003。
[3]賴俊利,「汽車結構組件承受低速落錘衝擊負載之動態反應」,國立成功大學航空太空研究所,碩士論文,2003。
[4]周雄偉,「橡膠支承墊於環境衝擊下之劣化行為」,國立成功大學土木工程研究所,碩士論文,2006。
[5]游永豐,「電子裝置衝擊減振研究」,私立元智大學機械工程研究所,碩士論文,2000。
[6]藍先進,「電路板衝擊試驗與有限元素模擬分析」,私立元智大學機械工程研究所,碩士論文,2005。
[7]陳克強,「衝擊試驗機滑動平台之設計驗證與評估」,國立屏東科技大學機械工程研究所,碩士論文,2006。
[8]許宏旭,「印刷電路板之低速衝擊研究」,國立成功大學航空太空研究所,碩士論文,2004。
[9]陳建銘,「無鉛錫球封裝晶片之掉落衝擊測試」,國立中山大學機械與機電工程研究所,碩士論文,2004。
[10]Yi-Shao Lai, Po-Chuan Yang, and Chang-Lin Yeh, “ Effects of different drop test conditions on board-level reliability of chip-scale packages , ” Microelectronics Reliability, Vol. 48, pp. 274-281, 2008.
[11]S.T. Jenq, H.S. Sheu, Chang-Lin Yeh, Yi-Shao Lai, and Jenq-Dah Wu, “ High-G drop impact response and failure analysis of a chip packaged printed circuit board, ” International Journal of Impact Engineering , Vol. 34, pp. 1655-1667, 2007.
[12]Desmond Y.R. Chong, F.X. Che, John H.L Pang, Kellin Ng, Jane Y.N. Tan, and Patrick T.H. Low,“ Drop impact reliability testing for lead-free and lead-based soldered IC packages,” Microelectronics Reliability, Vol. 46, pp. 1160-1171, 2006.
[13]Pyoung-Wan Kim, Bo-Seong Kim, Eun-Chul Ahn, and Tae-Gyeong Chung,“Improvement of drop reliability in OSP/Cu pad finished packages,” Proceedings of the Electronics Packaging Technology Conference, pp. 168-173, Dec., 2006.
[14]Xin Qu, Zhaoyi Chen, Bo Qi, Taekoo Lee, and Jiaji Wang,“ Board level drop test and simulation of leaded and lead-free BGA-PCB assembly,”Microelectronics Reliability, Vol. 47, pp. 2197-2204, 2007.
[15]Yi-Shao Lai, Ping-Feng Yang, and Chang-Lin Yeh, “ Experimental studies of board-level reliability of chip-scale packages subjected to JEDEC drop test conditions,” Microelectronics Reliability, Vol. 46, pp. 645-650, 2006.
[16]Don-Son Jiang, Yuan Lin Tzeng, Yu-Po Wang, and C.S. Hsiao, “ Board level drop test and simulation of CSP for handheld application,” Proceedings of the 7th International Conference on Electronics Packaging Technology, pp. 1-4 , August, 2006 .
[17]Yeng-Ping Wang, Don-Son Jiang, Yu-Po Wang, and C.S. Hsiao, “ Board level reliability study for CSP with 400um ball pitch,” Proceedings of the Microsystems Packaging Assembly and Circuits Technology, pp. 354-357, 2007.
[18]Kinuko Mishiro, Shigeo Ishikawa, Mitsunori Abe, Toshio Kumai, Yutaka Higashiguchi, and Ken-ichiro Tsubone,“ Effect of the drop impact on BGA/CSP package reliability,”Microelectronics Reliability, Vol. 42, pp. 77-82, 2002.
[19]Jing Zhang, Maohua Du, Nufeng Feng, and Taekoo lee,“ Board level drop test reliability for MCP package,” Proceedings of the Electronic Packaging Technology Conference, pp. 1-4, Aug, 2006.
[20]Tsung-Yueh Tsai, Yi-Shao Lai, Chang-Lin Yeh, and Rong-Sheng Chen, “ Structural design optimization for board-level drop reliability of wafer-level chip-scale packages, ” Microelectronics Reliability, Vol. 48, Issue 5, pp. 757-762, 2008.
[21]Tan L.B, Seah S.K.W, Wong E.H, Xiaowu Zhang, V.B.C. Tan, and Lim C.T.,“ Board level solder joint failures by static and dynamic loads,” Proceedings of the Electronic Packaging Technology Conference, pp.244-251, Dec., 2003.
[22]Tong Yan Tee, Jing-Luan, Eric Pek, Chwee Teck Lim, and Zhaowei Zhong,“ Advanced experimental and simulation techniques for analysis of dynamic responses during drop test,”IEEE Transaction on Electronic Components and Technology, Vol. 1 pp. 1088-1094, 2004.
[23]Tong Yan Tee, Hun Shen Ng, Chwee Teck Lim, Eric Pek, and Zhaowei Zhong,“ Impact life prediction modeling of TFBGA packages under board level drop test,”Microelectronics Reliability, Vol. 44, pp. 1131-1142, 2004.
[24]Jing-Luan, Tong Yan Tee, Eric Pek, Chwee Teck Lim, and Zhaowei Zhong,“ Dynamic responses and solder joint reliability under board level drop test,”Microelectronics Reliability, Vol. 47, pp. 450-460, 2007.
[25]張糸涵,「歷時分析中克服衝擊載重不連續的技巧」,國立台北科技大學土木與防災研究所,碩士論文,2004。
[26]E.Suhir,“Could shock tests adequately mimic drop test conditions?,”Proceedings of the Electronics Components and Technology Conference , pp. 563-573, 2002.
[27]Chwee-Teck Lim, Y.M.Teo, and V.PW. Shim,“ Numerical simulation of the drop impact response of a portable electronic product,” IEEE Transaction on Electronic Components and Technology, Vol. 25, No. 3, pp. 478-485, 2002.
[28]Pradeep Lall, Sameep Gupte, Prakriti Choudhary, and Jeff Suhling, “ Solder joint reliability in electronics under shock and vibration using explicit finite-element submodeling,” IEEE Transaction on Electronic Components and Technology, Vol. 30, No. 1, pp. 74-83, 2007.
[29]Seungbae Park, Chirag Shah, Jae Kwak, Changsoo Jang, and James Pitarresi,“ Transient dynamic simulation and full-field test validation for a slim-PCB of mobile phone under drop/impact,” Proceedings of the 9th Electronics Packaging Technology Conference, pp. 914-923, 2007.
[30]Tong Yan Tee, Jing-Luan, Eric Pek, Chwee Teck Lim, and Zhaowei Zhong,“ Novel numerical and experimental analysis of dynamic responses under board level drop test,”Proceeding of the 5th Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, pp. 133-140, 2004.
[31]Gu Jie, C.T. Lim, and A.A.O Tay“ Modeling of solder joint failure due to PCB bending during drop impact,”Proceeding of the 6th Electronics Packaging and Technology Conference, pp. 678-683, 2004.
[32]Liping Zhu and Walt Marcinkiewicz,“ Drop impact reliability analysis of CSP packages at board and product levels through modeling approaches,”IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 3, pp. 449-456, 2005.
[33]J.E. Luan and T.Y. Tee,“ Novel board level drop test simulation using implicit transient analysis with input-G method,”Proceedings of the 6th Electronics Packaging Technology Conference , pp. 671-677, 2004.
[34]Tong Yan Tee, Jing-en Luan, and Hun Shen Ng,“ Development and application of innovational drop impact modeling techniques,” Proceedings of the 7th Electronics Packaging Technology Conference , pp. 504-512, 2005.
[35]Chang-Lin Yeh, Yi-Shao Lai, and Chin-Li Kao,“ Evaluation of board-level reliability of electronic packages under consecutive drop,” Microelectronics Reliability, Vol. 46, pp. 1172-1182, 2006.
[36]Chang-Lin Yeh and Yi-Shao Lai, “ Support excitation scheme for transent analysis of JEDEC board-level drop test,” Microelectronics Reliability, Vol. 46, pp. 626-636, 2006.
[37]陳邵杰,「電子封裝掉落衝擊測試之量化可靠度評估」,國立台灣大學機械工程研究所,碩士論文,2006。
[38]Jing-en Luan and Tong Yan Tee, “ Analysis of PCB subassembly dynamic responses using integrated analytical ,numerical and experimental techniques,” Proceedings of the 6th International Conference on Electronics Packaging Technology, pp. 133-140, 2005
[39]Dave S. Steinberg,“ Vibration Analysis for Electronic Equipment,”John Wiley & Sons, New York, Second Edition, 1988.
[40]Cyril M. Harris and Allan G. Piersol,“ Shock and Vibration Handbook,”R.R Donnelley & Sons, New York, Fifth Edition, 2002 .
[41]M.L. James, G. M. Smith, J. C. Wolford and P. W. Whaley,“ Vibration of Mechanical and Structural Systems,”Harper &ROW, New York, 1989.
[42]Balakumar Balachandran and Edward B. Magrab,“ Vibrations,”Thomson Learning, USA, 2004.
[43]Benson H. Tongue,“ Principles of Vibration,”Oxford , New York, 1996.
[44]Singiresu S. Rao,“ Mechanical Vibrations,”Addison & Wesley, Third Edition, 1995.
[45]MATLAB and Simulink for Technical Computing Documentation
[46]JEDEC,“ Mechanical Shock,”JEDEC Standard JESD22-B110A, Solid State Technology Association, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊