跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭李瑞
研究生(外文):Li-Ruei Kuo
論文名稱:應用於衛星通訊天線設計之前瞻性技術發展
論文名稱(外文):Potential Techniques of Circularly Polarized Antenna Designs for the Applications of Satellite Communication
指導教授:周錫增
指導教授(外文):Hsin-Tseng Chou
學位類別:博士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:91
中文關鍵詞:衛星通訊圓極化旋天線螺旋背脊天線陣列天線印刷電路板指向性
外文關鍵詞:Satellite CommunicationsCircular PolarizationSpiral AntennaHelix AntennaSpirally Ridged AntennaAntenna ArrayPrinted Circuit TechnologiesDirectivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文乃針對衛星通訊應用之天線設計與其前瞻性技術發展加以研究探討,近年來衛星通訊快速地蓬勃發展,包含常見的衛星數位音頻廣播、衛星數位直播電視、全球衛星定位系統以及衛星電話等,均早已普及於民間應用之中。由於衛星通訊屬於遠距通訊,依據不同應用類別其所需的天線特性也不盡相同,本文將對幾類不同應用之衛星天線進行設計與探討。首先我們考量了屬於遠距通訊的衛星通訊其天線往往需具備高指向性與抗干擾的圓極化特性,因此我們以具備該兩者特性的螺旋天線作為基礎,發展設計出一具備單方向、高指向性、圓極化與超寬頻之新型螺旋背脊天線,本天線不但保有螺旋天線之原有優異特性,更加改善了其雙方向輻射場型的浪費,進而提升單向輻射場型之指向性。將可有效應用於碟型天線之饋入天線,或利用其寬頻、圓極化與高指向特性作為微波暗房量測使用之量測天線。
接下來由於遠距通訊需利用窄波束之高指向性天線,因此通訊位置往往受限於固定定點,十分不便。目前已有搭配機械結構來解決此之困擾,如常見新聞台的SNG連線、軍方與船艦的衛星通訊系統,均是採用碟型天線搭配機械式馬達來鎖定衛星方位進行定位通訊。雖然該方法可解決固定定點位置通訊之問題,但由於需搭載碟型天線使得載具過於笨重,加上行進間所存在風阻問題依然無法於高速行進中與衛星進行通訊。因此本文提出一種多層平面式印刷螺旋型態之寬頻陣列天線,本天線係利用十分普及的印刷電路板技術,以低廉成本設計一平面式寬頻螺旋陣列天線,以有效解決現有架構過於笨重之問題,文中並分別對於單一天線元件與陣列天線中元件與元件間之干擾特性進行分析探討。
再者近年來全球衛星定位系統不但被廣泛應用,更被整合至個人手持裝置之中,舉凡行動電話、個人數位助理、手持式衛星定位系統以及數位相機等,均可看見GPS之整合應用。因此如何在有限的空間中整合各項模組且不破壞天線輻射場型,即為十分重要。有鑑於此本文提出了一種整合電路子系統之主動天線,在原有的天線外觀中整合入一電路子系統,有效的縮納空間且保有原有之性能。文中亦對於電路系統與天線輻射場型之相互影響進行分析探討。
In this article, a discussion of proactive technique development of satellite communication antennas design will be presented.
Recently, due to the rapid developments of satellite communications, lots of satellite communications applications, including digital broadcasting, digital TV, GPS (Global Position System) system and satellite phones, have been used in our daily lives.
Because satellite communications belong to long distance communication, different applications would require different antenna characteristics; therefore, this paper will discuss designs of several antennas used in satellite communications.
First of all, because long distance communications usually require high directivity and circular polarization, a new high directivity and circular polarization Spirally Ridged Antenna is developed based on spiral antennas which have those characteristics. Moreover, this antenna not only keeps the original superior characteristics, but also changes radiation patterns from bi-directional to uni-directional, reduces wasted power and enhances the directivity. Furthermore, because of the bandwidth and polarization, this antenna can be used as feed antennas of dish antennas or measurement antennas in the chamber.
In addition, due to long distance communications employed high directivity antennas which have small beam width, communications are usually incontinently constrained at fixed positions. Even though combining mechanical structures with dish antennas, such as Satellite News Gathering and radar on a warship, can adjust communication directions and solve the problem, mechanical equipments still too heavy for normal vehicles and air resistance limits the communications when moving in a high speed. Therefore, in the article, a multi-layer broadband printed helix-type antenna array will be presented to solve this problem. Furthermore, this antenna is built using printed circuit technology which can reduce the cost but precisely produce a planer wide-band helix array antenna to solve the existing weight problems. Moreover, a discussion that analyzes single element and discuss inferiors between elements in the array will be presented.
At last, in the recent years, the global position system (GPS) has been widely applied and integrated to different personal handset equipments. But how to integrate circuit modules with antennas in a limited region without breaking antenna radiation patterns becomes an important issue. Therefore, in the article, a subsystem embedded active antenna that integrated a circuit subsystem outside an antenna to effectively compress space but keep the original performance will be presented. Furthermore, interferes between the circuit system and antenna radiation patterns will also be analyzed and compared.
Publication agreement
Abstract (Chinese) iii
Abstract (English) v
Acknowledgements viii
Vita ix
List of Figures xv
Chapters:
1. Introduction 1
2. An Ultra-Wide Bandwidth Circularly Polarized Antenna with Spiral Ridges to Increase Radiation Directivity
2.1 Introduction 6
2.2 Antenna Design Scenario 8
2.3 Parametric Summary of Antenna Characteristics and Experimental Validation 10
2.4 Improvement by a Round Edge Treatment 14
2.5 Conclusion 24
3. An UWB Spirally Ridged Antenna for High Directive CP Radiations
3.1 Introduction 25
3.2 Antenna Design Scenario 27
3.3 Numerical and Experimental Validation 30
3.4 Conclusion 35
4. A Broadband Printed Helix-type Antenna for Wireless Communications at High Frequencies
4.1 Introduction 36
4.2 The Realization of a Single Antenna Element 40
4.3 Numerical and Experimental Examinations of Antenna Characteristics 42
4.4 Conclusion 54
5. Characteristic Evaluation of an Active Patch Antenna Structure with an Embedded LNA Module for GPS Reception
5.1 Introduction 55
5.2 Patch Design with Embedded LNA 58
5.3 Numerical and Experimental Analysis 60
5.3.1 The Influence of the LNA module to the Antenna’s Performance 60
5.3.1.1 Numerical Studies in Changes of the Antenna Performance for Various Antenna Structures 60
5.3.1.2 Experimental Studies of the Embedded LNA Impact on Antenna Performance 64
5.3.2 The Antenna’s Impact on LNA Performance 66
5.3.2.1 LNA Performance at Normal GPS Signal Level 70
5.3.2.2 LNA Performance under High Received Power Level 72
5.3.2.3 The Parameters of LNA with Cavity Shielded by Copper Sheets 79
5.4 Discussion and Conclusion 81
6. Summary............................................................................... 83
Bibliography……………………………………………………….........85
[1]A. R. Mallahzadeh, A. A. Dastranj, and H. R. Hassani, “A Novel Dual-Polarized Double-Ridged Horn Antenna for Wideband Applications”, Progress In Electromagnetics Research B, Vol. 1, 67-80, 2008.
[2]J. D. Kraus, R. J. Marhefka, Antennas for All Applications, 3rd ed., McGRAW-HILL, 2003.
[3]Q. Liu, C.-L. Ruan, L. Peng, and W.-X. Wu, “A Novel Compact Archimedean Spiral Antenna with Gap-Loading”, Progress In Electromagnetics Research Letters, Vol. 3, 169-177, 2008
[4]Balanis, C. A., Antenna Theory: Analysis and Design,3rd edition, John Wiley & Sons,New Jersey,2005..
[5]Stanton McMillan, “Log Spiral Design for Direction of Arrival Estimation”, IEEE Antennas and Propagation Society International Symposium, AP-S. Digest , vol. 2, Jun. 1991, pp.719-722.
[6]S. Jacobsen, A. Murberg, “Characterization of a Tranceiving Antenna Concept for Microwave Heating and Thermometry of Superficial Tumors”, Progress In Electromagnetics Research, PIER 18, 105–125, 1998
[7]D. S. Filipovic, J. L. Volakis, “Broadband meanderline slot spiral antenna”, IEE, Proc.-Microw. Antenna Propag., vol. 149, 2. Apr., 2002, pp.98-105.
[8]J. D. Dyson, “The Equiangular Spiral Antenna”, Ire Transations on Microwave Theory and Techniques, vol. 7, issue 2, Apr. 1959, pp.181-187.
[9]B. A. Kramer, M. Lee, C.C. Chen, J. L. Volakis, “Designs and Performance of an Ultrawide-Band Ceramic-Loaded Slot Spiral”, IEEE, Trans. Antennas Propagat., vol. 53, no. 7, Jul., 2005, pp.2193-2199.
[10]B. A. Kramer, S. Koulouridis, C.C. Chen, J. L. Volakis, “A Novel Reflective Surface for an UHF Spiral Antenna”, IEEE, Antennas and Wireless propagation letters, vol. 5, 2006, pp.32-34.
[11]Z. H. Qian, K. W. Leung and R. S. Chen, “Analysis of Circularly Polarized Dielectric Resonator Antenna Excited by a Spiral Slot”, Progress In Electromagnetics Research, PIER 47, 111–121, 2004
[12]M. W. Nurnberger, J. L. Volakis, “New Termination for Ultrawide-Band Slot Spirals”, IEEE, Trans. Antennas Propagat., vol. 50, no. 1, Jan., 2002, pp.82-85.
[13]D. Oh, I. Park, “Two-Arm Microstrip Spiral Antenna with a Circular Aperture on the Ground Plane for Generating a Circularly Polarized Conical Beam”, Antennas and Propagation Society International Symposium, 2003, IEEE, vol.3, Jun. 2003, pp.866-869.
[14]Yen-Chun Peng, “The Studies of High Directivity Circularly Polarized Antenna” Master’s thesis, Yuan-Ze University, Taiwan, Republic of China, June 2006
[15]M. W. Numberger, J. L. Volakis, “A New Planar Feed of Slot Spiral Antennas,” IEEE, Trans. Antennas Propagat., vol. 44, no. 1, Jan., 1996, pp.130-131.
[16]E. Gschwendtner, J. Partebas, W. Wiesbeck, “Spiral Antenna with Frequency-Independent Coplanar Feed for Mobile Communication Systems”, Antennas and Propagation Society International Symposium,1999, IEEE,vol.1, Jul. 1999, pp.560-563.
[17]J. L. Volakis, M. W. Nurnberger, D. S. Filipovic, “A Broadband Cavity-Backed Slot Spiral Antenna”, IEEE, Antenna and Propagation Magazine. vol. 43, no. 6, Dec., 2001, pp.15-26.
[18]D. S. Filipovic, J. L. Volakis, “Novel Slot Spiral Antenna Designs for Dual-Band/Multiband Operation”, IEEE, Trans. Antennas Propagat., vol. 51, no. 3, Mar., 2003, pp.430-440.
[19]Ansoft Corporation, High Frequency Structure Simulator (HSFF) User Manual, Pittsburgh, PA, Ansoft Corporation, 2001.
[20]S. Qu and C. Ruan, “Quadrate bowtie antenna with round corners”, 2005 IEEE International Conference on Ultra-Wideband, pp. 4, 5-8 Sept. 2005
[21]X. Chen, W. Zhang, R. Ma, J. Zhang, J. Gao, “Ultra-wideband CPW-fed antenna with round corner rectangular slot and partial circular patch”, IET Proceedings- Microwaves, Antennas & Propagation, Vol. 1(4), Aug. 2007, pp. 847-851
[22]W. Burnside, M. Gilreath, B. Kent, G. Clerici, G., “Curved edge modification of compact range reflector”, IEEE Transactions on Antennas and Propagation, Vol. 35(2), Feb 1987, pp. 176- 182
[23]J. Gupta, K. P. Ericksen, W. D. Burnside, “A method to design blended rolled edges for compact range reflectors”, IEEE Transactions on Antennas and Propagation, Vol. 38(6), Jun 1990, pp. 853-861
[24]M.B. Botello, H.A. Jardon, and G.I. Ruiz, “Design and simulation of a 1 to 14 GHz broadband electromagnetic compatibility DRGH antenna”, Electrical and Electronic Engineering, 2005, 2nd International Conference, Sep. 2005, pp. 118–121.
[25]CST, CST Studio Suite 2006B User’s manual, CST Computation Simulation Technology, Wellesley, MA, 2006
[26]Tranquilla, J. M. and S. R. Best, “A study of the quadrifilar helix antenna for global positioning system applications,” IEEE Trans. Antennas Propagat., Vol. 38,1545–1550,Oct. 1990.
[27]Ebrahimi-Ganjeh, M. A. and A. R. Attari, “Interaction of dual band helical and PIFA handset antennas with human head and hand,” Progress In Electromagnetics Research, PIER 77,225–242, 2007.
[28]Mailloux, R. J., Phased Array Antenna Handbook, Artec h House, Boston,1994.
[29]Qu,Y., G. Liao, S.-Q. Zhu, and X.-Y. Liu, “Pattern synthesis of planar antenna array via convex optimization for airborne forward looking radar,” Progress In Electromagnetics Research, PIER 84, 1–10,2008.
[30]Jow, U.-M.,Y.-J. Lai, C.-L. Weng, C.-S. Chen, and C.- S. Shyu, “Functional embedded RF circuits on multi-layer printed wiring board (PWB) process,” Proceedings of the 55th Electronic Components and Technology Conference, Vol. 2,1634–1641,Ma y 31–June 3,2005.
[31]Wu, Q., R. Jin, and J. Geng, “Pulse preserving capabilities of printed circular disk monopole antennas with different substrates,” Progress In Electromagnetics Research, PIER 78, 349–360,2008.
[32]Fan, Z., S. Qiao, H.-F. Jiang Tao, and L.-X. Ran, “A miniaturized printed dipole antenna with V-shaped ground for 2.45 GHz RFID readers,” Progress In Electromagnetics Research, PIER 71,149 – 158,2007.
[33]Tai, K. L., “System-In-Package (SIP): Challenges and opportunities,” Asia and South Pacific Design Automation Conference (ASP-DAC’00),191,2000.
[34]Laskar, J., A. Sutono, C.-H. Lee, M. F. Davis, M. Maeng, N. Lal, K. Lim, S. Pinel, M. Tentzeris, and A. Obatoyinbo, “Development of integrated 3D radio front-end system-onpackage (SOP),” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2001, 23rd Annual Technical Digest,215–218, Baltimore,MD,2001.
[35]Davis, M. F., A. Sutono, K. Lim, J. Laskar, and R. Tummala, “Multi-layer fully organic-based system on package (SOP) technology for RF applications,” IEEE Conference on Electrical Performance of Electronic Packaging, 103–106,Scottsdale,AZ, 2000.
[36]Delisle, G. Y. and K. Hettak, “Smart antenna design with millimeter wave arrays,” IEEE VTS 50th Vehicular Technology Conference, Vol. 3,1351–1355,1999.
[37]Kumar, P .,A. V.,V. Hamsakutty, J. Yohannan, and K. T. Mathew, “Microstripline FED cylindrical dielectric resonator antenna with a coplanar parasitic strip,” Progress In Electromagnetics Research, PIER 60,143–152,2006.
[38]Si, L.-M. and X. Lv, “CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications,” Progress In Electromagnetics Research, PIER 83,133–146,2008.
[39]Xue, W., C.-H. Liang, X.-W. Dai, and J.-W. Fan, “Design of miniature planar dual-band filter with 0◦ feed structures,” Progress In Electromagnetics Research, PIER 77,493–499,2007.
[40]Sadat, S.,M. Fardis, F. G. Gharakhili, and G. Dadashzadeh, “A compact microstrip square-ring slot antenna for UWB applications,” Progress In Electromagnetics Research, PIER 67, 173–179,2007.
[41]Zhou, H.-J., Q.-Z. Liu, Y.-Z. Yin, and W. B. Wei, “Study of the band-notch function for swallow-tailed planar monopole antennas,” Progress In Electromagnetics Research, PIER 77,55 – 65,2007.
[42]Zaker, R., C. Ghobadi, and J. Nourinia, “A modified microstrip- FED two-step tapered monopole antenna for UWB and WLAN applications,” Progress In Electromagnetics Research, PIER 77, 137–148,2007.
[43]Sadat, S., M. Houshmand, and M. Roshandel, “Design of a microstrip square-ring slot antenna filled by an H-shape slot for UWB applications,” Progress In Electromagnetics Research, PIER 70,191–198,2007.
[44]Ren, W., “Compact dual-band slot antenna for 2.4/5 GHz WLAN applications,” Progress In Electromagnetics Research B, Vol. 8, 319–327,2008.
[45]Ansari, J. A.,R. B. Ram, and P. Singh, “Analysis of a gap coupled stacked annular ring microstrip antenna,” Progress In Electromagnetics Research B, Vol. 4,147–158,2008.
[46]Jolani, F., A. M. Dadgarpour, and H. R. Hassani, “Compact Mslot folded patch antenna for WLAN,” Progress In Electromagnetics Research Letters, Vol. 3,35–42,2008.
[47]Yin, X.-C.,C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, “A planar U type monopole antenna for UWB applications,” Progress In Electromagnetics Research Letters, Vol. 2,1–10,2008.
[48]Ansari, J. A.,P . Singh, S. K. Dubey, R. U. Khan,and B. R. Vishvakarma, “H-shaped stacked patch antenna for dual band operation,” Progress In Electromagnetics Research B, Vol. 5, 291–302,2008.
[49]Ying, C. and Y. Zhang, “Integration of ultra-wideband slot antenna on LTCC substrate,” Electron. Lett. , Vol. 40,645–646, May 2004.
[50]S. Lin, Y. Qian, T. Itoh, “A low noise active integrated antenna receiver for monopulse radar applications,” Microwave Symposium Digest, 2001 IEEE MTT-S International, vol. 2, pp. 1395-1398, 2001.
[51]D. Radulovic, A. Nesic, I. Radnovic, “Active patch antennas integrated with Rx/Tx front end,” Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003. 6th International Conference on, vol. 1, pp. 49-52, 2003.
[52]B. Floyd, K. Kim, O. Kenneth, “Wireless interconnection in a CMOS IC with integrated antennas,” Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International, pp. 328-329, 2000.
[53]S.-W. Chung, S.-Y. Lee, K.-H. Park, “Wideband impedance matching of integrated antennas and CMOS low noise amplifiers for a multi-band UWB receiver,” Radio and Wireless Conference, 2004 IEEE, pp. 131-134, 2004.
[54]J. D. Kraus, Antennas, 2nd ed., McGraw Hill, 1988.
[55]TM1006 Low Noise Amplifier for GPS, Taiwan Microelectronics.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊