跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周政頤
研究生(外文):Cheng-Yi Chou
論文名稱:手機對醫療院所內儀器之無線電電磁干擾評估
論文名稱(外文):Evaluation of EMI Risk Due to the Interaction Between Cellular Phones and Medical Devices
指導教授:陳興義陳興義引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:時域有限差分法手機電磁干擾
外文關鍵詞:FDTDcellular phoneEMI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文分成兩部份。第一部份量測GSM及PHS手機在開機瞬間、待機狀態、發話瞬間、通話過程、斷話瞬間之發射功率。量測過程亦考慮手機的不同極化方向。從量測結果發現PHS系統的手機在所有操作狀態下所發射的功率並非都是最小的。第二部份利用時域有限差分法(FDTD)去計算手機發射的電場強度。手機的模型利用四分之一波長的單耦極天線嵌在一矩形機殼上方,矩形機殼的內部為一等效材料而外層為一介電材料。研究過程中手機發射的電場強度亦經過實驗量測。從實驗量測與模擬之計算得知離手機0~3米處的電場大小介於0.02~39.0 V/m。從研究結果發現如果手機與醫療設備的距離大於1公尺,則手機發射出來的電場強度可以符合國際電工技術委員會(IEC)所規範的電場最大強度不可超過3 V/m的電磁干擾免疫標準。本論文建議手機與醫療設備間的最小距離為3米以避免電磁干擾發生。
The FDTD method was used to calculate the electric fields emitted from cellular phones. Cellular phones were modeled by a quarter-wavelength monopole antenna mounted on a rectangular box with equivalent material in the interior of the rectangular box and a dielectric coating in the exterior of the rectangular box. Measurements of the electric fields emitted from cellular phones were also performed by using a Narda Model SRM-3000 high frequency selective radiation meter with an isotropic E-field probe. From measurement and simulation results, electric fields emitted from cellular phones are in the range of 0.02~39.0 V/m for separation distances of 0~3 meters between handsets and test points. It is found that field strengths emitted from cellular phones may meet the recommended EMI immunity level of 3 V/m set by the IEC for medical equipment keeping a separation distance of more than 1 meter from cellular phones. An interference threshold separation distance of 3 meters is proposed for evaluating the interaction between cellular phones and medical devices.
中文摘要 ………………………………………………I

英文摘要 ………………………………………………III

致謝 ………………………………………………V

目錄 ………………………………………………VI

圖目錄 ………………………………………………VIII

表目錄 ………………………………………………X

第一章 前言…………………………………………1
第二章 時域有限差分法……………………………3
2.1 簡介…………………………………………3
2.2 馬克斯威爾方程式和Yee細胞格.........4
2.3 時域有限差分法……………………………6
2.4 吸收邊界……………………………………17
第三章 GSM與PHS電磁波輻射強度探討……………23
摘要…………………………………………23
3.1 前言…………………………………………23
3.2 實驗量測系統與環境………………………24
3.3 六款手機實驗量測結果……………………30
3.4 結論…………………………………………35
第四章 手機與醫療設備間的電磁干擾頻估………36
4.1 簡介…………………………………………36
4.2 時域有限差分法計算空間之區分…………38
4.3 蜂巢式手機的時域有限差分法數學模型…39
4.4 電場強度的模擬和量測……………………42
4.5 結論…………………………………………51
第五章 結論…………………………………………53
參考文獻 ………………………………………………55
[1] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propagation, vol. AP-14, no. 5, pp. 302-307, 1966.
[2] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics, vol. 114, no. 1, pp. 185-200, 1994.
[3] R. L. Higdon, “Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation,” Mathematics of Computation, vol. 47, no. 176, pp. 437-459, 1986.
[4] Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A Transmitting Boundary for Transient Wave Analysis,” Science Sinica, Series A, vol. 27, no. 10, pp.1063-1076, 1984.
[5] G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equation,” IEEE Trans. Electromagnetic Compatibility, vol. 23, pp. 377-382, 1981.
[6] K. R Umashankar and A. Taflove, “Analytical modes for EM scattering,” U. S. Air Force Contact, F19628-82-C0140, EM Science Division, Rome Air Development Center, Hanscom AFB, MA, Final Report, 1984.
[7] A. Taflove and M. E. Brodwin, “Numerical Solution of Steady-Sate Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equation,” IEEE Trans. Microwave Theory and Tech., vol. MTT-23, no. 8, pp. 623-630, 1975.
[8] A. Bayliss and E. Turkel, “Radiation Boundary Conditions for Wave-Like Equations,” Communications on Pure and Applied Mathematics, vol. 33, pp. 707-725, 1980.
[9] P. C. Myers, N. L. Sadowsky, and A..H Barrett, “Microwave Thermography:principles, methods, and clinical Applications,” J. Microwave Power, vol. 14, pp. 105-114, 1979.
[10] T. Kobayashi, T. Nojima, K. Yamada, and S. Uebayasi, “Dry Phantom Composed of Ceramics and Its Application to SAR Estimation,” IEEE Trans. Microwave Theory and Tech., vol. 41, no. 1, pp. 136-140, Jan. 1993.
[11] T. Schmid, O. Egger, and N. Kuster, “Automated E-Field Scanning System for Dosimetric Assessments,” IEEE Trans. Microwave Theory and Tech., vol. 44, no. 1 pp. 105-113, Jan. 1996.
[12] Q. Yu, O. P. Gandhi, M. Arosson, and D. Wu, “An Automated SAR Measurement system for Compliance Tesing of Personal Wireless Devices,” IEEE Trans. Electromagnetic Compatibility, vol. 41, no. 3, pp. 234-245, Aug. 1999.
[13] O. P. Gandhi, G. Lazzi, and C. M. Furse, “Electromagnetic Absorption in the Human Head and Neck for Mobile Telephones at 835 and 1900 MHz,” IEEE Trans. Microwave Theory and Tech., vol. 44, no. 10, pp. 1884-1897, Oct. 1996.
[14] J. Toftgard, S. N. Hornsleth , J. B. Andersen, “Effects on Portable Antennas of the Presence of a Person,” IEEE Trans. Antenna and Propagat., vol.41, no. 6, pp. 739-746 , June 1993.
[15] R. P. King, “Electromagnetic Field Generated in Model of Human Head by simplified Telephone Transceiver,” Radio Science, vol.30, no.1, pp.267-281, Jan.-Feb. 1995.
[16] L. Martens, J. De Moerloose, D. De Zutter, J. De Pootrer, and C. De Wagter, “Calculation of The Electromagnetic Fields Induced in the Head of an operator of a cordless Telephone,” Radio Science, vol.30, no.1, pp.283-290, Jan.-Feb. 1995.
[17] P. J. Dimbylow, “FDTD calculations of SAR for a Dipole Closely Coupled to the Haed at 900MHz and 1.9GHz,” Phys. Med. Biol., vol. 38, pp.361-368, 1993.
[18] S. I. Watanabe, M. Taki, T. Nojima, and O. Fujiwara , “Characteristic of The SAR Distributions in a Head Exposed to Electromagnetic Fields Radiated by A Hand-Held Portable Radio,” IEEE Trans. Microwave Theory and Tech., vol. 44, no. 10, pp. 1974-1983, Oct. 1996.
[19] O. P. Gandhi, G. Lazzi, and C. M. Furse, “Electromagnetic Absorption in the Human Head and Neck for Mobile Telephones at 835and 1900MHz,’’ IEEE Trans. Microwave Theory and Tech., vol. 44, no. 10, pp.1884-1897, Oct. 1996.
[20] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, and N. Kuster, “The Dependence of EM Energy Absorption Upon Human Head Modeling at 900MHz,’’ IEEE Trans. Microwave Theory and Tech., vol. 44, no. 10, pp. 1865-1872, Oct. 1996.
[21] M. Ojoniewski, and M. A. Stuchly, “A study of the Handset Antenna and Human Body Interaction,’’ IEEE Trans. Microwave Theory and Tech., vol. 44, no. 10, pp. 1855-1864, Oct. 1996.
[22] J. S. Colburn, and Y. Rahmat-samii, “Human Proximity Effects on Circular Polarized Handset Antennas in Personal Satellite Communications,’’ IEEE Trans. Antennas and Propagat., vol. 46, no. 6, pp. 813-819, June 1998.
[23] A. D. Tinniswood, C. M. Furse, and O. p. Gandhi, “Computations of SAR Distributions for Two Anatomically Based Models of the Human Head Using CAD Files of Commercial Telephones and the Parallelized FDTD Code,’’ IEEE Trans. Antennas and Propagat., vol. 46, no. 6, pp. 829-833, June 1998.
[24] J. C. Lin, “Specific Absorption Rates(SARs)Induced in Head Tissues by Microwave Radiation from Cell Phones,’’ IEEE Antennas and Propagat. Magazine, vol. 42, no. 5, pp. 138-140, Oct. 2000.
[25] P. Bernardi, M Cavagnaro, S. Pisa, and E. Piuzzi, “Specific Absorption Rate and Temperature Increases in the Head of a Cell-Phone User,’’ IEEE Trans. Microwave Theory and Tech., vol. 48, no. 7, pp. 1118-1126, July 2000.
[26] A. Hirata and T. Shiozawa, ” Correlation of Maximum Temperature Increase and Peak SAR in the Human Head due to Handset Antenna,” IEEE, Trans. Microwave Theory Tech., vol. 51, no. 7, pp. 1834-1841, July 2003.
[27] G. M. J. Van Leeuwen, J. J. W. Lagendijk, B. J. A. M. Van Leersum, A. P. M. Zwamborn, S. N. Hornsleth, and A. N. T. Kotte, “ Calculation of Change in Brain Temperatures due to Exposure to a Mobile Phone,” Phys. Med. Biol., vol. 44, pp. 2367–2379, 1999.
[28] J. Wang and O. Fujiwara, “FDTD Computation of Temperature Rise in the Human Head for Portable Telephones,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1528–1534, Aug. 1999.
[29] A. Hirata, T. Katayama, and T. Shiozawa, “Thermal Effects in the Human Head for Exposure to EM Waves Emitted from Terminals for Mobile Satellite Services,” in Proc. 10th IEEE Int. Personal Indoor and Mobile Radio Communications Symp., Osaka, Japan, Paper G-5-4, Sept. 1999.
[30] M. Morita, A. Hirata, and T. Shiozawa, “Temperature Rises in the Human Head Exposed to EM Waves Emitted From a Dipole Antenna at Various Microwave Frequencies,” in Proc. Optical Fiber Science and Electromagnetic Theory, Osaka, Japan, Dec. 2000, pp. 283–286.
[31] J. Wang, T. Joukou, and O. Fujiwara, “Dependence of Antenna Output Power of Temperature Rise in Human Head for Portable Telephones,” in Proc. Asia–Pacific Microwave Conf., Nov. 1999, vol. 2, pp. 481–484.
[32] P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific Absorption Rate and Temperature Increases in the Head of a Cellular-Phone User,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1118–1126, July 2000.
[33] P. Wainwright, “Thermal Effects of Radiation from Cellular Telephones,” Phys. Med. Biol., vol. 45, pp. 2363–2372, 2000.
[34] O. P. Gandhi, Q.-X. Li, and G. Kang, “Temperature Rise for the Human Head for Cellular Telephones and for Peak SARs Prescribed in Safety Guidelines,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1607–1613, Sep. 2001.
[35] A. Hirata, M. Morita, and T. Shiozawa, “Temperature Increase in the Human Head due to a Dipole Antenna at Microwave Frequencies,” IEEE Trans. Electromag. Compat., vol. 45, pp. 109–117, Feb. 2003. SAR Distributions at 900 and 1800 MHz,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2180–2184, Nov. 2000.
[36]K. J. Clifford, K. H. Joyner, D. B. Stroud, M. Wood, B. Ward, and C. H. Fernandez, “Mobile Telephones Interfere with Medical Electrical Equipment,” Australian Physical & Engineering Sciences in Medicine, vol. 17, no. 1, pp. 23-27, 1994.
[37]R. E. Schlegel and F. H. Grant, “Wireless Phones and Cardiac Pacemakers: in Vitro Interaction Study,” Proceedings of the 19th International Conference-IEEE/EMBS, Chicago, Illinois, Oct. 30-Nov. 2, 1997, vol. 6, pp. 2551-2554.
[38]F. H. Grant and R. E. Schlegel, “Interaction Testing between Wireless Phones and Implantable Cardioverter Defibrillators,” Proceedings of the 19th International Conference-IEEE/EMBS, Chicago, Illinois, Oct. 30-Nov. 2, 1997, vol. 6, pp. 2555-2557.
[39]F. H. Grant, D. Heirman, and G. Kuriger, “Wireless EMC in the Medical Industry: Review of Research and the Impact on EMI Risk,” Proceedings of the 2001 International Symposium on Electromagnetic Compatibility, Montreal, Que, Canda, Aug. 13-17, 2001, vol. 2, pp. 1292-1297.
[40]D. L. Hayes, P. J. Wang, D. W. Reynolds, N. A. Mark Estes III, J. L. Griffith, R. A. Steffens, G. L. Carlo, G. K. Findlay, and C. M. Johnson, “ Interference with Cardiac Pacemakers by Cellular Telephones,” The New England Journal Medicine, vol. 336, no. 21, pp. 1473-1479, May 22, 1997.
[41]K, S. Tan I. Hinberg, and J. Wadhwani, “Electromagnetic Interference in Medical Devices: Health Canada’s Past and Current Perspectives and Activities,” Proceedings of the IEEE international Symposium on Electromagnetic Compatibility, Montreal, Canada, Aug. 13-17, 2001, vol. 2, pp. 1283-1288.
[42]I. Baba, H. Furuhata, T. Nojima, T. Kano, and S. Tsubota, “Experimental Study of Electromagnetic Interference from Cellular Phones with Electronic Medical Equipment,” Journal of Clinical Engineering, vol. 23, no. 2, pp. 123-134, March/April 1998.
[43]M. Okoniewski and M. A. Stuchly, “ Modeling of Interaction of Electromagnetic Fields from a Cellular Telephone with Hearing Aids,” IEEE Trans. Microwave Theory and Techniques, vol. 46, no. 11, pp. 16861693, Nov. 1998.
[44]R. E. Schlegel and F. H. Grant, “Modeling of the Electromagnetic Response of Hearing Aids to Digital Wireless Phones,” IEEE Trans. Electromagnetic Compatibility, vol. 42, no. 4, pp. 347-357, Nov. 2000.
[45] C. L. Holloway, K. C. Allen, and M. G. Laflin, “ Analysis of Composite Walls for Short Path Propagation Modeling,” IEEE Antenna Propagation Society International Symposium, 1995, Digest vol. 1, pp. 526-529.
[46] M. Xu, T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, “Power-Bus Decoupling with Embedded Capacitance in Printed Circuit Board Design,” IEEE Trans. Electromag. Compat., vol. 45, no. 1, pp. 22-30, Feb. 2003.
[47] A. V. Hippel, Dielectric Materials and Applications, Artech House, Boston, 1995.
[48] P. Bernardi, M. Cavagnaro, and S. Pisa, ”Evaluation of the SAR Distribution in the Human Head for Cellular Phones Head in a Partially Closed Environment,” IEEE Trans. Electromag. Compat., vol. 38, no. 3, pp. 357-366, Aug. 1996.
[49] R. F. Harrington, Field Computation by Moment Methods, The Macmillan Company, New York, 1968.
[50] Narda Safety Test Solutions, 435 Moreland Road, Hauppauge, NY 11788, USA.
[51] IEC 60601-1-2, Medical Electrical Equipment Part 1-2: General Requirements for Basic Safety and Essential Performance-Collateral Standard: Electromagnetic Compatibility-Requirements and Tests, International Electrotechnical Commission, Ed. 3.0., Geneva, March, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊