跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖宗輝
研究生(外文):Tsung-Hui Liao
論文名稱:結合波束成型與合作分集技術之多重中繼台傳送系統
論文名稱(外文):Combined Beamforming and Cooperative Diversity Technologies for Multiple Relaying Systems
指導教授:黃正光黃正光引用關係
指導教授(外文):Jeng-Kuang Hwang
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:76
中文關鍵詞:合作式技術放大前向解碼前向空時編碼中繼站傳輸模式
外文關鍵詞:cooperative strategyamplify and forwarddecode and forwardspace-time coderelaying transmission protocol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們提出一基於放大前向以及解碼前向的混合式轉傳模式,此方法建立在使用者與中繼站之間的通道環境。藉由在中繼站端量測接收訊號之訊雜比,當通道環境是可靠時,中繼站將會使用解碼前向模式;反之,當通道環境不可靠時,則中繼站將會使用較簡易的放大前向模式。相較於傳統的解碼前向方法,我們所提出的混合式協定將可完全地利用區域內所有的中繼站,以提高合作式分集,由模擬結果指出不僅可以達到完全分集階數,相較於傳統的放大前向模式而言,我們所提出的混合式方法還可獲得較好的分集增益。
另一部分,我們將探討一基於空時編碼概念的合作式通訊技術,此方法乃架構在不同時間與空間之資源分配來做傳輸,並可利用渦輪編碼技術來實現此合作式傳輸模式。基於上述架構,我們提出了非同步空時編碼合作式通訊技術,並利用最佳的波束成型技術”多條件限制之最小誤差失真響應”,於此方法中,各個中繼站開始轉傳訊號的時間將會被錯開,以達到於接收端的雜訊正交特性。此外,在傳輸框架夠長的情況之下,我們所提出方法之吞吐量幾乎與傳統的空時編碼合作式技術一樣。我們更深入探討推衍該方法之中斷機率,並由結果可發現此方法不僅能夠達到完全分集,更可以獲得更好的分集增益。
In this thesis, we first develop and analyze a new hybrid cooperative strategy which combines the AF and DF schemes by the channel quality from source to relays. In terms of SNR measurement at relay terminals, the relay will resort to the DF scheme if the channel link is reliable. Otherwise, the relay uses the simple AF scheme for non-reliable channel. The proposed hybrid cooperative technology can fully exploit all relay terminals, and obtain full cooperative diversity order in comparison with the traditional DF scheme. Besides, the simulation result indicates the diversity gain is also better than the traditional AF cooperative strategy.
Secondly, for the problem of distributed space-time-coded (STC) cooperative system, we propose a new strategy, which be realized by applying the convolutional channel coding. Based on such STC cooperation, we propose an new asynchronous distributed STC cooperative strategy with the optimal beamforming technology, multiply-constrained minimum variance distortionless response (MC-MVDR). The relays will start cooperation by inserting latency to different time slots. For large frame size, the overall throughput is almost the same as the conventional STC cooperation. Besides, we also derive and analyze the corresponding outage probability at the output of beamformer. The results indicate the more diversity gain can be obtained due to the orthogonal thermal noise at destination. Furthermore, the proposed cooperative strategy can also achieve full diversity.
摘 要 II
ABSTRACT IV
Table of Contents VI
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the thesis 2
Chapter 2 The Cooperative System Model and Cooperative Diversity 4
2.1 Performance Metrics 5
2.1.1 Channel Capacity 5
2.1.2 Outage Probability 7
2.1.3 Diversity Order 8
2.2 System Model 8
2.2.1 Amplify and Forward Relaying 10
2.2.2 Decode and Forward Relaying 14
2.2.3 Selective Decode and Forward Relaying 18
2.3 Simulation Results 20
Chapter 3 Hybrid AF and DF Cooperative Strategy 23
3.1 Amplify and Forward Relaying under Multi-Relay Network 24
3.2 Decode and Forward under Multi-Relay Network 30
3.3 Hybrid Cooperative Strategy 34
Chapter 4 Asynchronous Distributed Space-Time Coding with MC-MVDR Beamforming Cooperative Systems 38
4.1 Conventional Distributed Space-Time Coding with MC-MVDR Beamforming 40
4.1.1 Conventional Distributed Space-Time Coded Relaying 40
4.1.2 Conventional Distributed STC Relaying via Convolutional Code 46
4.2 Performance Analysis of Conventional Distributed STC Relaying with MC-MVDR Beamforming 48
4.2.1 MC-MVDR Beamforming Technique 48
4.2.2 Outage Performance Analysis 52
4.3 Asynchronous Distributed STC under MC-MVDR Beamforming 55
4.3.1 Asynchronous Distributed STC Cooperation 55
4.3.2 Outage Probability Analysis 58
4.3.3 Chernoff Upper Bound 64
4.4 Simulation Results 66
Chapter 5 Conclusion 71
References 73
[1] A. Paulraj, R. Nabar and D. Gore: Introduction to space-time wireless communications. Cambridge, UK:Cambridge University Press, 2003.
[2] H. Yang: “A road to future broadband wireless access: MIMO-OFDM-based air interface,” IEEE Commun. Mag., vol. 1, Jan. 2005, pp. 53-60.
[3] D. Chen and J. N. Laneman: “Modulation and demodulation for cooperative diversity in wireless systems,” IEEE Trans. Wireless Commun., vol. 5, no. 7, pp. 1785–1794, Jul. 2006.
[4] J. N. Laneman, D. N. C. Tse, and G. W. Wornell: “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 3062–3080, December 2004.
[5] J. N. Laneman and G. W. Wornell: “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.
[6] R. Pabst, B. H. Walke, D. C. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W Zirwas, M. Dohler, H. Aghvami, D. D. Falconer, and G. P. Fettweis: “Relay-based deployment concepts for wireless and mobile broadband cellular radio,” IEEE Commun. Mag., vol. 42, no. 9, pp. 80–89, Sep. 2004.
[7] A. Sendonaris, E. Erkip, and B. Aazhang: “User cooperation diversity-Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.
[8] A. Sendonaris, E. Erkip, and B. Aazhang: “User cooperation diversity—Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.
[9] J.N. Laneman, G.W. Wornell: “Distributed space–time coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 59, no. 10, pp. 2415–2525, 2003.
[10]V. Tarokh, H. Jafarkhani and A. R. Calderbank: "Space-time block codes from orthogonal designs", IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, July 1999.
[11]A. Stefanov and E. Erkip: "Cooperative coding for wireless networks,” IEEE Trans. Commun., vol. 52, pp. 1470-1476, Sep. 2004.
[12]A. Stefanov and E. Erkip: "Cooperative space-time coding for wireless networks," IEEE Trans. Commun., vol. 52, pp. 1804-1809, Nov. 2005.
[13]Simon Haykin and Michael Moher: Modern Wireless Communications, Pearson Prentice Hall, 2005
[14]L. Ozarow, S. Shamai (Shitz), and A. Wyner: “Information theoretic considerations for cellular mobile radio,” IEEE Transaction on Vehicular Technology, vol. 43, no. 2, pp. 359–378, May 1994.
[15]A. Sendonaris, E. Erkip, and B. Aazhang: “Increasing uplink capacity via user cooperation diversity,” IEEE International Symposium on Information Theory, p. 156, August 1998.
[16]N. Laneman, G. Wornell, and D. N. C. Tse: “An efficient protocol for realizing cooperative diversity in wireless networks,” IEEE International Symposium on Information Theory, p. 294, June 2001.
[17]L. H. Ozarow, S. Shamai (Shitz), and A. D. Wyner: “Information theoretic considerations for cellular mobile radio,” IEEE Trans. Veh. Technol., vol. 43, pp. 359–378, May 1994.
[18]G. Kaplan and S. Shamai (Shitz): “Error Exponents and Outage Probabilities for the Block-Fading Gaussian Channel,” submitted to the IEEE Trans. Inform. Theory.
[19]T. M. Cover and A. A. E. Gamal: “Capacity Theorems for the Relay Channel,” IEEE Trans. Info. Theory, vol. 25, no. 5, Sept. 1979, pp. 572–84.
[20]I. E. Telatar. (1995) Capacity of Multi-Antenna Gaussian Channels, Tech. Rep. Bell Labs, Lucent Technologies. [Online]. Available: http://mars.bell-labs.com/papers/proof/proof.pdf
[21]-“Capacity of multi-antenna Gaussian channels,” Europ. Trans. Telecommun., vol. 10, pp. 585–596, Nov.-Dec. 1999.
[22]T. T. Soong: Fundamental of Probability and Statistics for Engineers, Wiley, 2004.
[23]S. M. Alamouti: "A simple transmit diversity technique for wireless communications", IEEE Journal Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[24]H. El Gamal and A. R. Hammons, Jr.: “On the design of algebraic space–time codes for MIMO block-fading channels,” IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 151–163, Jan. 2003.
[25]H. El Gamal, A. R. Hammons, and A. Stefanov: “Space–time overlays for convolutionally coded systems,” IEEE Trans. Commun., vol. 51, no. 9, pp. 1603–1612, Sep. 2003.
[26]R. A. Monzingo and T. W. Miller: Introduction to Adaptive Arrays. New York: Wiley, 1980.
[27]B. D.VanVeen and K. M. Buckley: “Beamforming: A versatile approach to spatial filtering,” IEEE Acoust., Speech, Signal Process. Mag., vol. 5, pp. 4–24, Apr. 1988.
[28]T. K. Sarkar, M. C. Wicks, M. S. Palma, and R. J. Bonneau: Smart Antennas. New York, Wiley-IEEE, 2003.
[29]B. Hassibi and B. M. Hochwald: “High-rate codes that are linear in space and time,” IEEE Trans. Inform. Theory, vol. 48, pp. 1804–1824, July 2002.
[30]Arogyaswami Paulraj, Rohit Nabar, and Dhananjay Gore: Introduction to Space-Time Wireless Communications, Cambridge University Press, 2003.
[31]Alberto Leon-Garcia: Probability and Random Processes for Electrical Engineering 2nd, Addison Wesley, 1994.
[32]John G. Proakis: Digital Communications, 4th, MC Graw Hill, 2001.
[33]K.J. Ray Liu, Ahmed K. Sadek, Weifeng Su and Andres Kwasinski: Cooperative Communications and Networking, Cambridge, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top