跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張順雄
研究生(外文):Shun-Hsiung Chang
論文名稱:多基地台干擾下IEEE802.16e系統之初始同步與基地台搜尋方法
論文名稱(外文):Initial Synchronization and Cell Search Schemes for IEEE 802.16e system with Multi-cell Interference
指導教授:黃正光黃正光引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:70
中文關鍵詞:正交分頻多工存取下行線路的前序列碼載波頻率偏移封包與符碼的時間點同步頻率同步基地台ID搜尋多基地台干擾
外文關鍵詞:orthogonal frequency division multiplexing access (OFDMA)downlink (DL) preamblecarrier frequency offset (CFO)packet/symbol timing synchronizationfrequency synchronizationcell ID searchmulti-cell interference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們首先建構IEEE 802.16e正交分頻多工存取系統之下行線路的前序列碼架構與含有載波頻率偏移的信號模型。為了使之達成真正的初始同步,吾人提出並改進如封包與符碼的時間點同步、頻率域上的頻率同步與基地台ID搜尋等等的方法,並藉由前面所提的前序列碼架構中包含的定理與其推導出的接收信號模型來分析證明這些演算法是否可行。此外當行動通訊裝置接收到有多基地台的前序列碼信號時,這些信號會彼此互相干擾並導致同步錯誤的結果發生。針對這個特殊情況,為了降低多基地台干擾的影響與避免同步錯誤的發生,在進行初始同步之前,吾人也提出了一些有效的多基地台干擾消除的方法分別於頻率域與空間-頻率域下使用。最後經由電腦模擬結果與解析顯示出吾人所提出的初始同步演算法會有高效率的性能表現,使其在實際運作下更為適用。
In this thesis, we first construct the downlink (DL) preamble structure and signal model with carrier frequency offset (CFO) for IEEE 802.16e orthogonal frequency division multiplexing access (OFDMA) systems. In order to achieve the truly initial synchronization, several methods for packet/symbol timing, frequency synchronization, and cell ID search are introduced, improve, and analyzed by using DL preamble properties and the derived received signal model. In addition, when the mobile device receives the preamble signals from multiple basestations, these signals will cause synchronization errors and interfere with each other which is called multi-cell interference. For this special case, we also propose some effective multi-cell cancellation schemes in frequency domain and in space-frequency domain to mitigate the multi-cell interference and to avoid the synchronization errors before using the proposed initial synchronization algorithms. Finally, from analytic and computer simulation results, we show that the proposed overall initial synchronization algorithm achieves high efficiency and performance, making it suitable for practical applications.
摘要 I
ABSTRACT II
誌謝 III
Content IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the thesis 2
Chapter 2 IEEE 802.16e WiMAX System and Preamble Signal Model with Channel and CFO Synchronization Errors 4
2.1 WirelessMAN-OFDMA PHY Specification 4
2.1.1 OFDMA Symbol Description 4
2.1.2 OFDMA Signal Model 7
2.1.3 OFDMA Frame Structure 8
2.1.4 WiMAX OFDMA Preamble Structure 9
2.2 Channel Model 13
2.2.1 Multipath Fading Channel Model 13
2.2.2 The ITU Fading Channel Model 15
2.3 Carrier Frequency Offset 15
2.4 Received Preamble Model with Channel Effect and Frequency Offset 17
Chapter 3 Timing and Frequency Synchronization and Cell Search Techniques 21
3.1 Packet Detection 22
3.1.1 Frame Detection Metric 22
3.1.2 Coarse Frame-Boundary Detection 24
3.1.3 Conjugate-Symmetry Correlation 26
3.2 Symbol Timing Synchronization 28
3.2.1 Coarse Synchronization 29
3.2.2 Fine Symbol Synchronization 30
3.3 Joint Integer Frequency Offset Estimation 31
3.4 Cell Search Algorithm 34
3.4.1 Cell Identification Algorithm Proposed by Su et al. 34
3.4.2 Improved Cell Identification Algorithm I 36
3.4.3 Improved Cell Identification Algorithm II 38
3.5 Simulation Results and Analysis 40
Chapter 4 Interference Cancellation Techniques in Multi-cell Interference 49
4.1 Multi-cell Signal and Interference Model 50
4.2 Multi-cell Interference Cancellation Technique in Frequency Domain 54
4.3 Multi-cell Interference Cancellation Technique in Space-Frequency Domain 56
4.3.1 Multi-cell Spatial Domain Signal Model 56
4.3.2 Fourier Beamformer for Multi-cell Cancellation Scheme 57
4.3.3 MVDR Beamformer for Multi-cell Cancellation Scheme 58
4.4 Simulation Results and Analysis 59
Chapter 5 Conclusions 67
Reference 68
[1] IEEE std 802.16-2004. IEEE standard for local and metropolitan area networks, -part 16: air interface for fixed broadband wireless access systems, Oct. 2004.
[2] Draft IEEE std 802.16e/D9. IEEE standard for local and metropolitan area networks-part 16: air interface for fixed and mobile broadband wireless access systems, June 2005.
[3] Bhatt, T. Sundaramurthy, V. Jianzhong Zhang McCain, D. “Initial synchronization for 802.16e downlink,” Nokia Inc., Irving, TX, Oct. 29 2006-Nov. 1 2006
[4] ITU-R Recommendation M.1225: “Guidelines for evaluation of radio transmission technologies for IMT-2000”
[5] K. C. Chang, J. W. Lin, and T. D. Chiueh, “Design of a downlink baseband receiver for IEEE 802.16e OFDMA mode in high mobility,” IEEE SOC Conference, Hsinchu , Taiwan, Sept. 2007
[6] P. Cheng, Z. Zhang, X. Zhou, J. Li, and P. Qiu, “A study on cell search algorithms for IEEE 802.16e OFDMA systems,” IEEE Wireless Communications and Networking Conference, 2007.
[7] H. Su, J. Zhang, and P. Zhang, “A preamble-based cell search scheme for OFDMA cellular systems,” Proc. of IEEE Conf. ICNICONSMCL, April 2006.
[8] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, pp. 1613-1621, Dec. 1997.
[9] T. M. Schmidl and D. C. Cox, “Low-overhead, low-complexity [burst] synchronization for OFDM,” IEEE International Conference on Communications, vol. 3., pp. 1301-1306, 1996.
[10] H. Minn, V. K. Bhargava and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, pp. 822-839, Jul. 2003.
[11] F. Tufvesson, O. Edfors and M. Faulkner, “Time and frequency synchronization for OFDM using PN-sequence preambles,” in Proc. IEEE Trans. Vehicular Technology Conference, vol. 4, pp. 2203-2207, Sep. 1999.
[12] M. Speth, F. Classen and H. Meyr, “Frame synchronization of OFDM systems in frequency selective fading channels,” in Proc. IEEE Vehicular Technology Conference, vol. 4, pp. 1807-1811, May 1997.
[13] Y. H. Kim, I. Song, S. Yoon and S. R. Park, “An efficient frequency offset estimator for OFDM systems and its performance characteristics,” IEEE Trans. Vehicular Technology., vol. 50, no. 5, pp. 1307-1312, September 2001.
[14] M. Morelli and U. Mengali, “An improved frequency offset estimator for OFDM applications,” IEEE Commun. Lett., vol. 3, pp. 75-77, Mar. 1999.
[15] D. S. Han, J. H. Seo and J. J. Kim, “Fast carrier frequency offset compensation in OFDM systems,” IEEE Trans. Consumer Electron., vol. 47, pp. 364-369, Aug. 2001.
[16] B. Ai, J. Ge, Y. Wang, S. Yang, P. Liu and G. Liu, “Frequency offset estimation for OFDM in wireless communications,” IEEE Trans. Consumer Electron., vol. 50, pp. 73-77, Feb. 2004.
[17] K. S. Kim, K. H. Chang, S. W. Kim, and Y. S. Cho, “A preamble-based cell searching technique for OFDM cellular systems,” In Proc. of IEEE VTC’03-Fall, vol. 4, pp. 2471-2475, Orlando, Oct. 2003.
[18] J. W. Lee and Y. H. Lee, “Rapid cell search in OFDM-based cellular systems,” In Proc. of IEEE VTC’2005-Spring, vol. 2, pp. 1273-1277, Stokholm, May 2005.
[19] T. D. Chiueh, and P. Y. Tsai, “OFDM Baseband Receiver Design for Wireless Communications,” John Wiley and Sons (Asia) Pte Ltd, pp. 85-114, 2007,
[20] J. Terry, and J. Heiskala, “OFDM Wireless LANs: A Theoretical and Practical Guide,” Sams Publishing, pp. 49-76, 2002
[21] Jeffrey H. Reed, “Software Radio: A Modern Approach to Radio Engineering,” Prentice Hall PTR, pp. 263-334, 2002
[22] 郭又瑋, 行動OFDM系統中基於導引信號之取樣時脈與載波頻率誤差聯合估測及補償方法, 元智大學通訊工程學系碩士論文
[23] 丁偉家, IEEE 802.16 OFDMA 低複雜度內接收機設計, 交通大學電信工程學系碩士論文
[24] 洪鉦翰, WiMAX同步之研究, 台灣科技大學電子工程系碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊