(3.236.222.124) 您好!臺灣時間:2021/05/10 15:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳博涵
研究生(外文):Bo-Han Chen
論文名稱:裝置X型加勁阻尼元件鋼構架之線性與非線性動態反應分析
論文名稱(外文):Linear and Nonlinear Dynamic Analysis of Steel Framed Structures with X-type Added Damping and Stiffness Elements
指導教授:黃立政黃立政引用關係
指導教授(外文):Li-Jeng Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:129
中文關鍵詞:X型加勁阻尼元件鋼構架地震地表運動
外文關鍵詞:X-type Added Damping and Stiffness Elements (ADAS)Steel FramesEarthquake Ground Motions
相關次數:
  • 被引用被引用:7
  • 點閱點閱:673
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來高樓結構趨向於更高之細長比,使得結構更為柔軟,在地震力與風力作用下,容易造成巨大變形及搖擺晃動,輕則造成居住人民的不舒適感,嚴重甚至造成結構共振而損壞;學者已有實驗研究於結構構架各樓層增加X型加勁阻尼元件,以期適度提昇結構體之勁度,降低地震力造成之振動,然而模型實驗,成本甚高,而合用之理論分析模擬仍然有待研究。本研究即嘗試建立一套初步的裝置X型加勁阻尼元件之構架動力反應之理論分析與數值模擬程式,並以五層鋼骨結構樓房為案例,探討採用X型加勁阻尼元件對鋼構架結構承受水平地震力負載之減震效應。文中首先採用集結質量模式推導五層鋼骨結構樓房掛載X型加勁阻尼板之運動方程式,在考慮X型加勁阻尼板非線性行為部份採用雙線性模式。動力反應分析之計算則在線性與非線性分別採用Runge–Kutta法及Newmark-β法計算,並與前人實驗結果進行比較,考慮1940年El Centro與1995年Kobe兩組不同特性地表加速度下之地震輸入,觀察其減震效能。本研究且進一步探討 型加勁阻尼板之質量、勁度、雙線性模式夾角及斜撐剛度與裝設角度等參數對鋼骨結構樓房動力反應之影響。結果顯示,本研究使用MATLAB軟體成功地建立一套初步的數值模擬程式,且從數值案例分析中得知,X型加勁阻尼板可有效地降低樓層與樓層間之相對位移,且X型加勁阻尼板與斜撐剛度越高,所產生的頻率也是相對越高,但是X型加勁阻尼板塑性行為雙線性模式夾角越小,反而頻率越高。
High-rise structure in recent years are tended to be designed with higher aspect ratio and thus more flexible and sensitive to seismic force and wind loading. The induced large vibrations would cause the uncomfortable feeling of living people or serious resonance damage of structures. Many scholars have conducted the experimental studies on the steel framed with X-type added damping and stiffness elements and found that the stiffness of the structure can be increased and the vibration can be reduced. However, cost of experimental model is very high and appropriate mathematical models for theoretical analysis and numerical simulation are required. This thesis is proposed to establish a theoretical approach to study the time-domain dynamic response steel frames with X-type added damping and stiffness (ADAS) elements. A five-story steel framed structure of buildings is considered to be the numerical example. Lumped mass model is employed and the stiffness of ADAS and bracing are deduced and composed into the systematic stiffness matrix of equations of motion. Bilinear model is employed when the nonlinear behavior of ADAS is considered. Runge-Kutta method and Newmark-β method are used in linear and nonlinear time-domain dynamic response calculations. Numerical results are compared with the experimental results conduced by previous researchers. 1940 El Centro and 1995 Kobe records of ground motions are employed as the earthquake excitations. It is found that the theoretical results almost agree well with the experimental results. Parametric study shows that the frequencies of structure are higher with the higher stiffness of ADAS and bracing elements and the smaller angle in nonlinear bilinear model of ADAS.
中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖 目 錄 VI
符號說明 X

第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 6
1.3 研究方法 10
1.4 論文架構 10

第二章 鋼骨結構樓房掛載X型加勁阻尼元件之動力系統數學模式 12
2.1 引言 12
2.2 問題描述 12
2.3 基本假設 12
2.4 運動方程式推導 13
2.5 時間解域之系統狀態方程式 17

第三章 鋼骨結構樓房掛載X型加勁阻尼元件之動力反應分析 19
3.1 引言 19
3.2 運動方程式描述 19
3.3 狀態空間描述 23
3.4 小結 23

第四章 值案例與結果討論 24
4.1 引言 24
4.2 案例參數描述 24
4.3 案例動力反應分析 26
4.4 理論與實驗誤差可能原因之探討 28
4.5 小結 29




第五章 參數探討 30
5.1 引言 30
5.2 X型加勁阻尼元件之質量效應 30
5.3 X型加勁阻尼元件之勁度效應 32
5.4 X型加勁阻尼元件 值之效應 34
5.5 X型加勁阻尼元件塑性行為 角之效應 34
5.6 斜撐 值之效應 34
5.7 斜撐 角之效應 34
5.8 小結 35

第六章 結論與未來研究之建議 36
6.1 結論 36
6.2 未來研究之建議 38

參考文獻 39

附圖 43
作者簡歷 115
口試答詢表 117
1. Aiken, I. D., Kelly, J. M., (1992), “Comparative Study of Four Passive Energy Dissipation Systems,” Bull NZ Nat Soc Earthquake Engineering, Vol.25, No.3, pp.175–92.
2. Arturo, Tena-Counga., (1997), “Mathematical Modeling of The ADAS Energy Dissipation Device,” Engineering Structures, Vol.19, No.10, pp.811-821.
3. Bjorhovde, R., and Chakrebarti, S. K., (1985), “Tests of Full-Size Gusset Plate Connection,” Journal of Structural Engineering, ASCE , Vol.111, No.3, pp.63-84.
4. Bjorhovde, R., (1988), “Limit State Design Consideration for Gusset Plate,” Journal of Constructional Steel Research, Vol.9, No.1, pp.61-63.
5. Bleich, F., (1952), “Buckling Strength of Metal Structures.” New York: McGraw Hill.
6. Brain, Sherin, CSP, and Stacy, Bartoletti, P. E, (1999), “Taiwan’s 921 Quake Effect on the Semiconductor Industry and Recommendations for Preparing for Future Earthquakes.”
7. Brown, V. L., (1988), “Stability of Gusseted Connections in Steel Structures,” Ph.D., Dissertation, University of Delaware.
8. 張國鎮、黃震興、蘇晴茂、李森枂, (2005), “結構消能減震控制及隔震設計,” 全華科技圖書股份有限公司.
9. Chakrebarti, S. K., and Richard, R. M., (1990), “Inelastic Buckling of Gusset Plates,” Structure Engineering Review, Vol.2, No.120, pp.13-29.
10. 陳暉欽, (2001), “橋樑混合式隔減震研究,” 國立中央大學土木工程研究所碩士論文.
11. 陳正誠, (2000), “韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計,” 結構工程, 第十五卷, 第一期, pp.55-67.
12. 陳明錚, (2001), “樓房用增效式阻尼裝置之振動台試驗,” 國立中央大學土木工程研究所碩士論文.
13. Cheng, J. J. R., and Hu, S. Z., (1987), “Compressive Behavior of Gusset Plate Connections,” Structural Stability Research Council, Vol .2, No.153, pp.147.
14. 邱聖雯, (2005), “晶圓廠使用隔減震補強試驗研究,” 國立台灣科技大學營建工程系碩士論文.
15. Chou, C. C., and Tsai, K. C., (2002), “Plasticity-Fiber Model for Steel Triangular Plate Energy Dissipating Devices”, Earthquake Engineering and Structural Dynamics, Vol.31, No.9, pp.1643-1655.
16. Dowswell, B., and Barber, S., (2004), “Buckling of Gusset Plate : Acomparison of Design Equations to Test Data,” Proceeding, Long Beach, California.
17. Hart G. C., (2000),“Structural Dynamics for Structural Engineers,” John Wiley & Sons.
18. Housner, G. W., (1997), “Special Issue, Structural Control:Past, Present, and Future,” Journal of Engineering Mechanics, Vol.123, No.9, pp.897-971.
19. 黃柏智, (2004), “年黏性阻尼器銜接斜撐勁度對結構減震效益之影響,” 國立台灣科技大學營建工程系碩士論文.
20. 朱聖浩, (2003), “鋼橋結構分析及設計程式之建立,” 內政部營建署委託研究計畫報告.
21. Ju, S. H., (1997), “Development a Nonlinear Finite Element Program with Rigid Link and Contact Element,” Report of NSC in R.O.C., NSC-86-2213-E-006-063.
22. 郭榮哲, (2001), “三維樑元素於非線性有限元素之架構,” 國立成功大學土木工程碩士論文.
23. 賴興國, (2002), “安裝增效式阻尼裝置樓房之水平雙向振動台試驗與分析,” 國立中央大學土木工程研究所碩士論文.
24. 李景亮、梁英文, (1999), “結構耐震設計,” 文笙書局.
25. Lee, George. C., and Loh, Chin-Hsiung., (2000), “The Chi-Chi, Taiwan Earthquake Of September 21, 1999: Reconnaissance Report,” MCEER, New York.
26. 劉育成, (2003), “強震時抗彎構架桿件元素韌性因子需求分佈之研究,” 國立成功大學土木工程碩士論文.
27. 粘進財, (2008), “安裝金屬阻尼器鋼筋混凝土結構之耐震評估方法,” 國立中央大學土木工程研究所碩士論文.
28. Rabinovitach, J. S., Cheng, J. J. R., (1993), “Cyclic Behavior of Steel Gusset Plate Connection,” Structure Engineering, University of Alberta.
29. Richard, Ralph, (1986), “Analysis Large Bracing Connection Designs for Heavy Connection,” Proceedings of the 1986 National Engineering Conference.
30. Scholl, R. E., (1990), “Improve The Earthquake Performance of Structures With Added Damping and Stiffness Elements,” Proceeding of Forth U. S. National Conference on Earthquake, Palm Springs, California.
31. Sheng, N., Yam, C. H., and Lu, V. P., (2002), “Analytical Investigation and the Design of the Compressive Strength of Steel Gusset Plate Connections,” Journal of Constructional Steel Research, Vol.58, No.11, pp.1473-1493.
32. Skinner, R. I., Kelly, J. M., and Heine, A. J., (1975), “Hysteric Dampers for Earthquake Resistant Structures,” Earthquake Engineering and Structural Dynamics, Vol.3, No.3, pp.287-296.
33. Soong, T. T., and Dargush, G. F., (1997), “Passive Energy Dissipation Systems in Structural Engineering,” John Wiley and Sons Inc., New York.
34. Soong, T. T., and Spencer, B. F., (2002), “Supplemental Energy Dissipation State of the Art and State of the Practice,” Engineering Structures, Vol.24, No.3, pp.243-259.
35. 蘇源峰, (1991), “加勁阻尼結構的耐震反應,” 結構工程, 第六卷, 第一期, pp. 113-120.
36. 譚夙婷, (2004), “三角型加勁阻尼裝置應用於房屋減震之研究,” 國立成功大學土木工程研究所碩士論文.
37. Tajrish, Tehran, (2001), “Passive energy dissipation device for typical steel frame building in Iran,” Engineering Structures, Vol. 23, No.6, pp.643-655.
38. Thornton, W. A., (1984), “Bracing Connections for Heavy Constructions,” Engineering Journal, Third Quarter, Vol. 21, No.3, pp.139-148.
39. 蔡克銓, 陳煥煒, (1992), “含加勁阻尼裝置構架之耐震行為研究,” 國立台灣大學地震工程研究中心, 技術報告CREE-R81-09.
40. 蔡克銓, (1993), “三角形鋼鈑消能器之理論、實驗與應用,” 結構工程, 第八卷, 第四期, pp.3-19.
41. 蔡克銓, (2000), “含加勁阻尼器構架之動態反應,” 中興工程顧問社.
42. 蔡崇興, (2001), “強化式加勁阻尼器於結構耐震補強之應用,” 土木技術, 第四卷, 第八期, pp.55-67.
43. 蔡志明, (2002), “諧調液體阻尼器之結構模擬及其在高樓減震之應用,” 國立臺灣大學工程科學與海洋工程學系碩士論文.
44. Walbridge, S. S., Grondin, G. Y., and Cheng, J. J. R., (1998), “An Analysis of the Cyclic Behavior of Steel Gusset Plate Connections,” University of Alberta Department of Civil and Environmental Engineering Structural Engineering Report.
45. Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., and Fujimoto, M., (1988), “Properties of Brace Encased in Buckling-Restraining Concrete and Steel Tube,” Proceeding of Ninth Word Conference on Engineering.
46. 王彥博, (2004), “降伏式金屬制震板之建築防震應用,” 高科技廠房震害防治與微振動研討會論文集.
47. Wen, Y. K., (1976), “Method for Random Vibration of Hysteretic Systems,” Journal of the Engineering Mechanics Division, ASCE, Vol.102, No.2, pp.249-263.
48. Whittaker, A. S., Bertero, V. V., Thompson, C. L., and Alonso, L. J., (1991), “Seismic Testing of Steel Plate Energy Dissipation Device,” Earthquake Spectra, Vol.7, No.4, pp.563-606.
49. Whitmore, R. E., (1952), “Experimental Investigation of Stresses in Gusset Plate,” University of Tennessee Engineering Experiment Station Bulletin.
50. Yam, M. C. H., and Cheng, J. J. R., (2002), “Behavior and Design of Gusset Plate Connections in Compression,” Journal of Structural Engineering, Vol.58, No.17, pp.1143-1159.
51. Yamamoto, K., Akiyama, N., and Okumura, T., (1988), “Buckling Strengths of Gusseted Truss joints,” Journal of Structural Engineering, Vol.114, No.3, pp. 575-591.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔