(54.236.58.220) 您好!臺灣時間:2021/02/28 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳瀧杰
研究生(外文):Lung-Chieh Wu
論文名稱:奈米碳管改質及與PC/ABS摻合之奈米複合材料製備及性質研究
論文名稱(外文):Modification of Carbon Nanotube and Preparation, Properties Studies of Nanocomposite with PC/ABS
指導教授:黃世梁關旭強
指導教授(外文):Shih-Liang HuangHsu-Chiang Kuan
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:116
中文關鍵詞:PC/ABS奈米碳管奈米複合材料官能基化超臨界二氧化碳
外文關鍵詞:PC/ABScarbon nanotubenanocompositeFunctionalizationsupercritical carbon dioxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:520
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分成為四部份:第一部份,在溶劑下以自由基反應原理將含有碳碳雙鍵單體,如馬來酸酐(Maleic anhydride, MA)、乙烯基矽烷(Vinyltrimethoxysilane , VTMOS)包覆在碳管表面上。藉由高解析穿透式電子顯微鏡(HR-TEM)可發現改質劑MA或VTMOS在碳管表面會包覆上約3~4 nm的厚度。並利用TGA高溫燒結後分析出碳管上的改質劑含量含量MA約有21wt%、VTMOS含量約有11wt%。
第二部份,在超臨界二氧化碳浸泡下以自由基反應原理進行碳管表面改質:分別與第一部份比較多壁奈米碳管(MWNT)、雙壁奈米碳管(DWNT)、單壁奈米碳管(SWNT),在超臨界二氧化碳狀態下進行馬來酸酐(MA)、乙烯基矽烷(VTMOS)的接枝反應。SWNT與DWNT,藉由HR-TEM觀察出在碳管表面上改質劑會呈現出一顆一顆團聚現象。經由MA及VTMOS改質,由Raman光譜分析出改質前後D-band與G-band比值之變化及再由傅氏紅外線光譜儀(FTIR)可確認出改質劑有成功接枝至碳管上。
第三部份,如同第一部份在丙酮溶劑下大量改質奈米碳管,接著再以3wt%的比例把未改質多壁奈米碳管(Pure MWNT)或以MA大量改質之奈米碳管或碳黑(Carbon Black)分別與PC/ABS混練製備成奈米複合材料。並由動態機械分析(DMA)結果為當含量為3wt%時,玻璃轉移溫度(Tg)不會因添加物的不同而有差異,皆有Tg提升的趨勢,平均Tg溫度都約在121~123℃之間。而純PC/ABS之拉伸強度為605.9Kgf/cm2,經添加未改質奈米碳管時為635.2Kgf/cm2或添加經MA改質之奈米碳管時為646.0Kgf/cm2,而添加碳黑時則為657.8Kgf/cm2,都能提升PC/ABS複材拉伸之強度,其中以添加碳黑時拉伸強度為最高。再藉由FE-SEM與HR-TEM觀察碳管與添加物在基材中分散情形,碳黑的分散比奈米碳管好,但改質後的奈米碳管也可以均勻分散。
第四部份,在DMF溶劑下以VTMOS大量改質奈米碳管,接著先與苯乙烯-馬來酸酐共聚物 (styrene maleic anhydride copolymer, SMA)混練後,再分別與PC/ABS混練成含有1 , 2 , 2.5 , 3wt%改質奈米碳管之複合材料。最後將第三部份與第四部份奈米複合材料進行一系列的機械性質、熱性質及微觀性質等分析。探討以VTMOS改質後之奈米碳管先與SMA混練,再分別以不同含量與PC/ABS混練時,探討PC/ABS/(X-CNT)的物性。加入未改質奈米碳管的拉伸強度及熱變形溫度(Heat Deflection Temperature, HDT)則分別為由添加1wt%時的532.6Kgf/cm2, 86℃提升至3wt%時的553.7Kgf/cm2, 89℃;而添加改質奈米碳管時,則分別由1wt%時的535.8Kgf/cm2, 84℃下降至3wt%時的504.0Kgf/cm2, 79℃。

This study contains four parts:The first part is the modification of CNT’s surface by free radical reaction with Maleic anhydride (MA) or Vinyltrimetoxysilane (VTMOS). The CNT’s surface thickness is increased about 3~4 nm with MA or VTMOS were observed by HR-TEM. TGA analysis of the modified carbon nanotubes contains about 21wt% MA or 11wt% VTMOS.
The second part is the surface modification of MWNT、DWNT、SWNT with MA or VTMOS by immersed in supercritical carbon dioxide (scCO2). Carbon nanotubes showed polymer agglomeration form by HR-TEM results. The D/G area ratio of Raman spectroscopy of CNT modified with MA or VTMOS are calculated. From FT-IR spectroscopy observation proved that MA or VTMOS was respectively grafted on the CNT surface.
The third part is the mass production of the modified CNT in acetone. And then 3wt% pure MWNT or modified CNT by MA or carbon black are blended with PC/ABS matrix to prepare the nanocomposite. In DMA analysis, the addition of 3wt% of three kinds of filler increase the glass transition temperatures (Tg), which are appeared between 121 ~ 123 ℃. The value of tensile strength increases from 605.9Kgf/cm2 of pure PC/ABS, to 635.2Kgf/cm2 with unmodified CNT, to 646.0Kgf/cm2 with modified CNT by MA and 657.8Kgf/cm2 of carbon black in nanocmposite. The highest tensile strength is nanocmposite with carbon black system. In FE-SEM and HR-TEM observation, the dispersion of carbon black is better than that of carbon nanotubes, but the modified carbon nanotubes can be homogenouly dispersed well also.
The fourth part is the mass production of the modified CNT in DMF and then successively mixed with SMA and PC/ABS matrix to prepare nanocomposite contain 1, 2, 2.5, and 3 wt% of CNT content, respectively. The mechanical properties, thermal properties and morphology of nanocmposite in the third part and fourth part were studied. The value of tensile strength and HDT value increases form 532Kgf/cm2, 86℃ to 553.7 Kgf/cm2, 89℃ of nanocmposite containing pure CNT and then descends from 535.8Kgf/cm2, 84℃ to 504.1Kgf/cm2, 79℃ of nanocmposite containing modified CNT as the content increases from 1wt% to 3wt%, respectively.
目錄
中文摘要..................................................I
英文摘要................................................III
謝誌.....................................................V
目錄...................................................VII
表目錄.................................................XII
圖目錄................................................XIII
第一章 緒論..............................................1
1.1前言...............................................1
1.2研究動機............................................2
第二章 文獻探討...........................................6
2.1PC/ABS介紹及應用....................................6
2.1.1起始劑與自由基反應................................8
2.2奈米碳管之介紹.......................................8
2.2.1奈米碳管介紹特性及應用.............................9
2.2.2奈米碳管結構....................................10
2.3奈米碳管的製備......................................16
2.3.1電弧放電法(Arc discharge).......................18
2.3.2雷射蒸發法(Laser vaporization)..................19
2.3.3化學氣相沉積法(Chemical vapor deposition)........20
2.4奈米碳管表面改質之方法................................22
2.5奈米碳管表面改質.....................................24
2.6超臨界二氧化碳介紹...................................30
2.7超臨界二氧化碳補助奈米碳管表面改質......................33
第三章 實驗部分...........................................35
3.1實驗設備............................................35
3.2藥品或材料...........................................36
3.3實驗步驟.............................................38
3.3.1在丙酮溶劑下改質奈米碳管...........................38
3.3.2於超臨界二氧化碳狀態下改質奈米碳管...................38
3.3.3奈米碳管在丙酮溶劑下之大量改質(MWNT-g-MA-A-L).......42
3.3.4奈米碳管在DMF溶劑下之大量改質(MWNT-g-VTMOS-D-L)....43
3.3.5混練試片製作.....................................46
3.4測試方法及儀器........................................47
3.4.1紅外線光譜儀(FTIR Spectroscopy)分析...............47
3.4.2拉曼光譜(Raman scattering spectra)分析...........48
3.4.3高解析度穿透式電子顯微鏡(HR-TEM)分析...............48
3.4.4場發試電子顯微鏡(FE-SEM)分析......................48
3.4.5動態機械分析儀(DMA)...............................49
3.4.6熱變形溫度分析(HDT) ..............................49
3.4.7熱重損失分析(TGA) ................................49
3.4.8化學分析電子能譜儀(XPS)............................49
3.4.9機械性質分析......................................50
第四章 結果與討論..........................................51
4.1第一部份:在溶劑下以單體進行奈米碳管改質.................52
4.1.1高解析穿透式電子顯微鏡(HR-TEM)分析.................52
4.1.2場發射電子顯微鏡(FE-SEM)分析......................56
4.1.3拉曼光譜(Raman)分析..............................58
4.1.4傅氏紅外光譜(FT-IR)分析..........................60
4.1.5 X-ray photoelectron spectroscopy (XPS)........62
4.1.6熱重損失分析(TGA)................................66
4.2第二部份:於超臨界二氧化碳狀態下進行奈米碳管改質...........67
4.2.1高解析穿透式電子顯微鏡(HR-TEM)分析................67
4.2.2場發射電子顯微鏡(FE-SEM)分析......................70
4.2.3拉曼光譜(Raman)分析..............................71
4.2.4傅氏紅外光譜(FTIR)分析............................75
4.2.5熱重損失(TGA)分析.................................80
4.3第三部份:以MA改質之奈米碳管與(PC/ABS)之混摻...............82
4.3.1動態機械分析儀(DMA)...............................82
4.3.2衝擊試驗..........................................84
4.3.3拉伸試驗..........................................85
4.3.4抗曲折試驗........................................86
4.3.5熱變形溫度(HDT)...................................87
4.3.6微觀性分析........................................88
4.4第四部份:以VTMOS改質之奈米碳管與(PC/ABS)之混摻...........92
4.4.1動態機械分析儀 (DMA)..............................92
4.4.2衝擊試驗(Impact Test).............................95
4.4.3拉伸試驗..........................................96
4.4.4抗曲折試驗........................................97
4.4.5熱變形溫度(HDT)...................................99
4.4.6TGA分析.........................................100
4.4.7微觀性質分析.....................................103
第五章 結論...............................................107
第六章 參考文獻...........................................112

[1] X. Jiang, Y. Bin, M. Matsuo, Polymer 2005;46, 7418.
[2] S. Kubota, H. Nishikiori, N. Tanaka, M. Endo, T. Fujii, J. Phys. Chem 2005;109, 23170.
[3] T. Saito, K. Matsushige, K. Tanaka, Physica B 2002; 232, 280.
[4] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelly Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. T. Lee, D. T. Colbert, R. E. Smalley, Science 280;280, 1253.
[5] J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, Enrique V. Barrera, Nano Lett 2003;3, 1107.
[6] H. Kong, P. Luo, C. Gao, D. Yan, Polymer 2005;46, 2472.
[7] C. H. Tseng, C. C. Wang, C. Y. Chen, Chem. Mater. 2007;19, 308.
[8] E. H. Lock, W. M. Merchan, J. D’ Arey, A. V. Saveliev, L. A. Kennedy, Journal of Physical Chemistry C, Letters, 2007;111, 13655.
[9] D. Qian, E. C. Dickey, R. Andrews and T. Rantell, Applied Physics Letters, 2000;76, 2868.
[10] S. Kumar, H. Doshi, M. Strinivasarao, J. O. Park, D. A. Schiraldi, Polymer 2003;43, 1701.
[11] C. F. Kuan, H. C. Kuan, C. C. M. Ma, C. H. Chen, H. L. Wu, Materials Letters 2007;61, 2744.
[12] 明鑫科技(股)公司http://www.anp.com.tw.
[13] S. Iijima, Nature 1991;354, 56.
[14] J. Che, T. Cagin, William A Goddard III, Nanotechnology 2000;11, 65.
[15] 成會明, “奈體碳管”, 2004年2月.
[16] C. Jourent, W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Nature 1997;388, 756.
[17] M. S. Dresselhaus, G. Dresselhaus, R. Saito. Carbon 1995;33, 833.
[18] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, Science 1994;265, 635.
[19] 黃建盛, “奈米碳管簡介”, 科學新天地, 第13期.
[20] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990;349, 354.
[21] T. W. Ebbesen, P. M. Ajayan, Nature 1992;358, 220.
[22] P. M. Ajayan, in Handbook of Nanostructured Materials and Nanotechnology H. S. Nalwa, ed. Academic Press, San Diego 2000;5, 375.
[23] S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loufty, Carbon 1993;31, 685.
[24] H.W. Kroto, J. R. Heath, S. C. O,Brian, R. F. Curl, R. E. Smalley, Natrue 1985;381, 162.
[25] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbenrt, R. E. Smalley, J. Phys. Chem 1995;99, 10694.
[26] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, et al., Science 1996;273, 483.
[27] C. Journet, P. Bernier, Appl. Phys A 1998;67, 1.
[28] E. Munoz, W. K. Maser, A. M. Benito, M. T. Martinez, G. F. de la Fuente, Y. Maniette, A. Righi, E. Anglaret, J. L. Sauvajol, Carbon 2000;38, 1445.
[29] G. S. Duesberg, J. Muster, H. J. Byrne, S. Roth, M. Burghard, Appl. Phys. A 1999;68, 269.
[30] J. H. Hafner, M. J. Bronikowski, B. R. Azomian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley, Chem. Phys. Lett. 1998;296, 195.
[31] I. Williens, Z. Konya, J. F. Colomer, G. Van Tendeloo, N. Nagaraju, A. Fonseca, and J. B. Nagy, Chem. Phys. Lett. 2000;317, 71.
[32] M. S. Dresselhaus, G. Dresselhaus, P.C. Eklund, R. Saito, M.
Endo, T. W. Ebbesen, CRC Press, 1997.
[33] 張文聖, 黃建良, “奈米碳管的製程介紹”, 工業材料雜誌, 2007年.
[34] Y. Chen, R.C. Haddon, S. Fang, A. M. Rao, P. C. Eklund, W. H. Lee, E. C. Dickey, E. A. Grulke, J. C. Pendergrass, A. Chavan, B. E. Haley, R. E. Smalley, Journal of material research 1998;13, 2423.
[35] Jian Chen, A. Mark. Haman, Hui Hu, Yongsheng Chen, Apparao M. Cao, Peter C.Eklund, Robert C. Haddon, Science 1998;282, 95.
[36] Z. Shi, Chemical Communications 2000;6, 461.
[37] Parton, J. E., Owen, S. J. T. Applied Electromagnetic 2nd edition., Macmillan publishers, London, 1986.
[38] Ramo, S. Whinnery, J. R. Fields and Waves in Commuication Electronics, 2nd edition, Cambridge University Press, Cambridge, England, 1986.
[39] S. Munirasu, J. Albuerne, A. Boschetti-de-Fierro, V. Abetz, Macromolecular Rapid Communications 2010;31.
[40] I. H. Choi, M. Park, S. S. Lee, S. C. Hong, European Polymer Journal 2008;44, 3087.
[41] S. H. Liao, M. C. Hsias, C. Y. Yen, C. C. M. MA, S. J. Lee, Ay Sy, M. C. Tsai, M. Y. Yen, P. L. Liu, J. P. Sources. 2009.
[42] C. M. Chang, Y. L. Liu, Carbon 2010; 48, 1289.
[43] A. Garg, E. Gulari, C. W. Manke, Macromolecules 1994;27, 20.
[44] A.R. Berens, G.S. Huvard, R.W. Korsmeyer, F.W. Kkunig, Berens, J. App. Polymer Sci. 1992;46, 231.
[45] J. Steinmetz, S. Kwon, H. J. Lee, E. A. H. R. Almairac, C. G. Bac, H. Kim, Y. W. Park, Chemical Physics Letters 2006;431, 139.
[46] Y. Baohua, W. Yubing, H. C. Yueh, P. Robert, I. Zafar, Journal of Nanoscience and Nanotechnology 2007;7, 994.
[47] 陳俊龍, “AES/ESCA表面分析技術於工業材料上的應用”, 工業材料106期, 1995年.
[48] C. H. Tseng, C. C. Wang, C. Y. Chen, Chem. Mater. 2007;19, 308.
[49] Y. L. Huang, S. M. Yuen, C. C. M. Ma, C. Y. Chuang, K. C. Yu, C. C. Teng, H. W. Tien, Y. C. Chiu, S. Y. Wu, S. H, Liao, F. B. Weng, Composites Science and Technology 2009;69, 1991.
[50] M. R. Alexander, R. D. Short, F. R. Jones, W. Michaeli, C. J. Blomfield, Applied Surface Science 1999;137, 179.
[51] F. Ibrahim, J.I.B. Wilson, P. John, Journal of Non-Crystalline Solids 1995;191, 200.
[52] H. Li, R. Wang, H. Hu, W. Liu, Applied Surface Science 2008;255, 1894.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔