跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王聖涵
研究生(外文):S. H. Wang
論文名稱:電刷鍍鎳基複合鍍層之製程及性質分析實驗研究
論文名稱(外文):Study in experimental process and Characteristic analysis of Nickel based composite coating by brushing plating
指導教授:侯光煦侯光煦引用關係
指導教授(外文):K. H. Hou
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:兵器系統工程碩士班
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:147
中文關鍵詞:電刷鍍鎳基合金耐蝕性實驗設計法奈米微粒複合鍍層
外文關鍵詞:Brushing PlatingNickel Based AlloyCorrosion ResistanceExperimental DesignNanometer ParticleComposite Coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以電刷鍍技術製備鎳基合金及複合鍍層,分析製程參數如電壓、通電量及奈米陶瓷微粒添加量等變因對鍍層性質的影響,並對鍍層的耐蝕能力予以研究。經由實驗設計方法之執行,藉微硬度量測、橫截面影像觀察及電化學腐蝕試驗分析鍍層防蝕性能,並對鍍層進行電子顯微鏡的觀察、元素成份分析及微硬度量測,分析比較鍍層性質與參數的關係。本研究電刷鍍鎳合金的腐蝕電流(Icorr)變化範圍為0.28 μA/cm2~2.42 μA/cm2,其最佳耐腐蝕鍍層之製程條件為電壓12V,電量0.45安培-小時,鍍層膜厚55.69μm,硬度約500HV。於過高的電壓下操作電刷鍍,將使得被鍍件產生的氫氣過量,導致鍍層中形成氣孔的數量及尺寸皆增加,降低鍍層的耐蝕性能。
本研究製備之複合鍍層性質如下:Ni-SiC複合鍍層之硬度範圍約505~677HV,鍍層中SiC微粒含量最高可達12.12wt.%,對應之微硬度值可達677HV。Ni-WC複合鍍層之硬度範圍約596~736HV,鍍層中WC微粒含量最高可達47.87wt.%,對應之微硬度值可達602HV。Ni-ND複合鍍層之硬度範圍約505~700HV,鍍層中ND微粒含量最高可達23.46wt.%,對應之微硬度值可達536HV。無添加界面活性劑製備Ni-Al2O3複合鍍層之硬度範圍約509~667HV,鍍層中Al2O3微粒含量最高可達8.85wt.%,對應之微硬度值可達667HV。添加界面活性劑(FC135, 300ppm)製備Ni-Al2O3複合鍍層之硬度範圍約574~817HV,鍍層中Al2O3微粒含量最高可達43.42wt.%,對應之微硬度值可達736HV。研究顯示複合鍍層之強度受奈米微粒含量影響,且奈米微粒的分散均勻程度直接影響鍍層的微硬度值。
This study focuses on the corrosion resistance, micro-hardness, and morphology of the nano nickel based composite coatings relating to the processing parameters manufactured by the brush plating technique. The experimental parameters are plating voltage, particle type, particle size, and particle density. The experiments were carried out by the total divisor experimental design. Also the corrosion resistance was measured by the current corrosion method. Experimental results show that the range of the correction current (Icorr) varied from 0.028 μA/cm2 to 2.42 μA/cm2. The optimum condition of corrosion resistance in this research was 12V and 0.45 ampere-hour current time. The thickness and micro-hardness of this coating are 55.69 micrometers and 500HV respectively. The brush-plating coating would reduce the corrosion resistance due to abounant hydrogen and hollow cavity form under high voltage conditions.
The properties of five kind composite coatings produced by the brush plating are presented as the followings:
(1) The hardness range of the Ni-SiC composite coatings was around 505~677HV. The highest SiC particle content may reach 12.12 wt.%, and the corresponding hardness may reach 677HV, in all Ni-SiC sample coatings.
(2) The hardness range of the Ni-WC composite coatings was around 596~736HV. The highest WC particle content may reach 47.87 wt.%, and the corresponding hardness may reach 602HV, in all Ni-WC sample coatings.
(3) The hardness range of the Ni-ND composite coatings was around 505~700HV. The highest ND particle content may reach 23.46 wt.%, and the corresponding hardness may reach 536HV, in all Ni-ND sample coatings.
(4) The hardness range of the Ni-Al2O3 composite coatings without adding surfactant in the electrolyte was around 509~667HV. The highest Al2O3 particle content may reach 8.85 wt.%, and the corresponding hardness may reach 667HV, in all Ni- Al2O3 sample coatings without adding surfactant.
(5) The hardness range of the Ni-Al2O3 composite coating with adding surfactant FC135, 300ppm in the electrolyte was around 574~817HV. The highest Al2O3 particle content may reach 43.42 wt.%, and the corresponding hardness may reach 736HV, in all Ni- Al2O3 sample coatings with adding surfactant.
Experimental results have shown that the contents of nanometer particle in coating layers would influence the intensity of the composite coating, and the dispersion uniformity also influences the micro-hardness value of composite coatings.
誌 謝 ii
摘 要 iii
ABSTRACT iv
目錄 vi
表目錄 x
圖目錄 xi
1. 前言 1
1.1 研究動機 1
1.1.1國軍武器系統維護及新式裝備研發的需求 1
1.1.2 對替代電鍍六價硬鉻鍍層的迫切需求 3
1.1.3電鑄精微模具的需求 4
1.2 研究目的 6
1.3 文獻回顧 8
1.3.1 電刷鍍Ni基合金及其複合鍍層之製程及特性研究 9
1.3.2 電鍍Ni基合金及複合鍍層之磨潤研究 12
1.3.3 相關於微粒引入鍍層之製程及磨潤之研究 16
1.3.4 製作Ni基奈米結構鍍層的可行性 20
2. 基礎理論 23
2.1 金屬電沉積 23
2.1.1 電鍍技術 23
2.1.2 電鑄原理 23
2.2 電刷鍍基本步驟與原理 24
2.2.1 電刷鍍技術的主要特點 24
2.2.2 鍍槽內進行電刷鍍操作 25
2.2.3 電刷鍍電源安培小時計的作用 25
2.2.4 電刷鍍溶液與槽鍍溶液之比較 26
2.2.5 電刷鍍溶液的耗電係數 27
2.2.6 前處理 27
2.2.6.1 電淨(電解除油) 27
2.2.6.2 活化(電解蝕刻) 29
2.2.6.3 底層刷鍍 29
2.2.6.4 鍍底層使用高電壓衝鍍之原因 30
2.2.7 功能鍍層刷鍍 30
2.2.7.1 電刷鍍過程中工作電壓之選擇 30
2.2.7.2 電刷鍍過程中鍍筆與工件之相對運動作用 31
2.2.7.3 電刷鍍過程中鍍筆與工件的相對運動速度之選擇 31
2.2.7.4 電刷鍍過程中工件與鍍液之適宜溫度 31
2.2.7.5 電刷鍍過程中鍍筆溫度對電刷鍍之影響 32
2.2.7.6 鍍筆沾滿鍍液進行無電擦拭之作用 32
2.2.7.7 鍍鎳時鍍液之pH值變化 33
2.2.7.8 電流密度對應鍍層硬度的關係 33
2.2.7.9 鍍筆與工件的相對運動對應鍍層硬度的關係 33
2.2.7.10 鍍液溫度對應鍍層硬度的關係 33
2.2.7.11 鍍層與基材結合機制 34
2.2.8 鍍層強化機制 34
2.2.9 複合電鍍 35
2.2.10 複合電刷鍍 35
2.2.11 奈米複合電刷鍍技術 35
2.2.12 奈米複合電刷鍍技術的特點 35
2.2.13 奈米微粒分散過程及技術 36
2.2.13.1 奈米微粒在鍍液中的分散過程 36
2.2.13.2 奈米微粒分散技術 36
2.2.13.3 奈米微粒對複合鍍層性質的影響 37
2.2.14 奈米複合電刷鍍鍍層的強化機制 38
2.2.15 奈米複合電刷鍍鍍層形成過程 39
2.2.16 表面活性劑對應奈米複合鍍層性質的影響 39
2.2.17 複合電鍍中分散微粒共析機制-複合鍍層形成的步驟 40
2.2.18 影響分散粒子共析的因素 40
3. 研究方向與實驗步驟及方法 44
3.1 研究方向 44
3.2 實驗步驟及方法 46
3.2.1電刷鍍Ni基合金奈米複合鍍層製作之實驗參數設計 46
3.2.2 電刷鍍Ni基合金奈米複合鍍層表面及結構性質分析 47
3.2.3 電刷鍍Ni基合金奈米複合鍍層磨潤實驗之設計與規劃 47
3.3 電刷鍍Ni基合金奈米複合鍍層研究進行步驟 48
3.4 實驗儀器設備及藥品 50
4. 實驗結果與討論 54
4.1鎳基合金鍍層 54
4.1.1 電刷鍍鎳基合金實驗設計 54
4.1.2 刷鍍參數對鍍層性質之影響 55
4.1.3 電刷鍍實驗參數對應抗蝕性能的變化 61
4.2鎳基奈米複合鍍層 64
4.2.1 電刷鍍鎳複合鍍層之實驗設計 64
4.2.2 電刷鍍參數對Ni-Al2O3複合鍍層之性質分析 65
4.2.3 電刷鍍參數對Ni-SiC複合鍍層之性質分析 74
4.2.4 電刷鍍參數對Ni-WC複合鍍層之性質分析 84
4.2.5 電刷鍍參數對Ni-Diamond(Ni-ND)複合鍍層之性質分析 93
4.3電刷鍍鎳基合金及鎳基複合鍍層之耐磨性能研究 102
4.3.1 鍍層之硬度及磨耗觀察 102
4.3.2 摩擦係數變化 104
4.4界面活性劑對微粒分散及電刷鍍鎳基複合鍍層之影響 105
4.4.1 沉降實驗 105
4.4.2 界面活性劑對電刷鍍鎳基複合鍍層之影響~以Al2O3為例 112
5. 結論 119
參考文獻 121
自 傳 130
碩士期間發表論著 131
[1] Arthur, G., Birch, D.J., Michie, G.M., Moorhouse, P.T., Wells, C., and Bell, T., “Wear Resistant Surfaces in Engineering,” HMSO Publications Book, Chapter 6-7, pp. 81-109, 1985.
[2] 周淑金、周雅靜、王正全, “非六價鉻的濕式表面處理技術”,台北,工業材料雜誌,第133-139頁,2005。
[3] 黃清安、陳昭佑、劉育瑋,“由三價鉻鍍液電沉積Cr-C、Cr-Ni及Cr-Ni-Fe合金覆層之特性及其退火行為之研究”,國科會成果報告,第1-11頁,2007。
[4] 陳仲宜、黃昆明,精微模具技術發展藍圖專題研究,2005。
[5] Ghouse, M., Viswanathan, M., and Ramachandran, E. G., “Occlusion Plating of Copper-Silicon Carbide Composites,” Metal Finishing, Vol. 78, No. 3, pp. 31-35, 1980.
[6] Buelens, C., Celis, J. P., and Roos, J. R., “Electrochemical Aspects of the Co-Deposition of Gold and Copper with Inert Particles,” Journal of Applied Electrochemistry, Vol. 13, No. 4, pp. 541-548, 1983.
[7] Zahavi, J. and Hazan, J., “Electrodeposited Nickel Composites Containing Diamond Particles”, Plating Surface Finishing, Vol. 70, No. 2, pp. 57-61, 1983.
[8] Hovestad, A. and Janssen, L. J. J., “Electrochemical Co-deposition of Inert Particles in a Metallic Matrix,” Journal of Applied Electrochemistry, Vol. 25, No. 6, pp. 519-527, 1995.
[9] Ferkel, H., Müller, B., and Riehemann, W., “Electrodeposition of Particle-Strengthened Nickel Films,” Materials Science & Engineering, Vol. A 234-236, pp. 474-476, 1997.
[ 0] Benea, L., Bonora, P. L., Borello, A., Martelli, S., Wenger, F., Ponthiaux, P., and Galland, J., “Composite Electrodeposition to Obtain Nanostructured Coatings,” Journal of the Electrochemical Society, Vol. 148, No. 7, pp. C461- C465, 2001.
[11] Liu, Y. C., Wang, J. W., Peng, Y. M., Chen, H. J., Shen, J. H., and Huang, C. A., “Ni-SiC Composite plating,” MRL Bulletin of Research and Development, Vol. 4, No. 1, pp. 31-34, 1990.
[12] Ghouse, M., “Wear Characteristics of Sediment Co-deposited Nickel-SiC Composite Coatings,” Metal Finishing, Vol. 82, No. 3, pp. 33-37, 1984.
[13] Zahavi, J. and Hazen, J., “Electrodeposited Nickel Composites Containing Diamond Particles,” Plating and Surface Finishing, Vol. 70, No. 2, pp. 57-61, 1983.
[14] Riedel, W., “Electroless Nickel Plating,” Finishing Publications Ltd., Stevenage, 1991.
[15] Anggeng, X., Xinmin, H., Zonggang, D., and Yanwen, W., “Properties of Electroless Ni-P and Ni-P-SiC,” Plating and Surface Finishing, Vol. 76, No. 6, pp. 90-93, Jun, 1989.
[16] McKnight, S.W., and Ibrahim, A. K., “Determination of Transport Parameters in Amorphous Ni-P by Infrared Reflectivity and Hall Measurements,” Journal of Non-Crystalline Solids, Vol. 61-62, No. 2, pp. 1301-1306, Jan, 1983.
[17] Xu, Jiang., Xie, Xishan., and Xu, Zhong.,” Double Glow Surface Alloying of Low Carbon Steel with Electric Brush Plating Ni Interlayer for Improvement in Corrosion Resistance,” Surface and Coatings Technology, Vol. 168, No. 2-3, pp. 156-160, May 22, 2003.
[18] Hu, S.B., Tu, J.P.,Mei, Z.,Li, Z.Z., and Zhang, X.B., “Adhesion Strength and High Temperature Wear Behaviour of Ion Plating TiN Composite Coating with Electric Brush Plating Ni-W Interlayer,” Surface and Coatings Technology, Vol 141, No 2-3, pp. 174-181,Jun 18, 2001.
[19] Du, L., Xu, B., Dong, S., Yang, H., and Wu, Y., “Preparation, Micro-Structure and Tribological Properties of Nano-Al2O3/Ni Brush Plated Composite Coatings,” Surface and Coatings Technology, Vol 192, No 2-3, pp. 311-316, Mar 21, 2005.
[20] Wu, B., Yu, X.H., Zhang, B., and Xu, B.S., “Preparation and Characterization of Graphite- Nickel Composite Coatings by Automatic Brush Plating,” Surface and Coatings Technology, Vol 202, No 10, pp. 1975-1979,Feb 15, 2008.
[21] Wu, B., Xu, B.S., Zhang, B., and Lu, Y.H., ” Preparation and Properties of Ni/Nano-Al2O3 Composite Coatings by Automatic Brush Plating, Surface and Coatings Technology, Vol 201, No 16-17, pp. 6933-6939,May 21, 2007.
[22] Jiang, X., Liu, W., Dong, S.Y., and Xu, B.S., “ High Temperature Tribology Behaviors of Brush Plated Ni-W-Co/SiC Composite Coating,” Surface and Coatings Technology, Vol 194, No 1, pp. 10-15, Apr 20, 2005.
[23] Du, L., Xu, B.S., Dong, S.Y., Li, Xin., Y.H., Tu, W.Y., and Zhu, Z.X.,” Friction and Wear Characteristics of Brush Plating Composite Coating under Sand-Containing Oil,” Journal of Materials Science and Technology, Vol 21, No 1, p 100-104, January, 2005.
[24] Gu, Z.M. and Huang, W.J., “Study on Microstructures and Properties of Electro Brush-Plating Composite Coatings,” Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, Vol 25, No 5, pp. 1133-1136, October, 2004.
[25] Jiang, X.U. and Liu, W.J., “The Wear Behavior of Brush-Plated Ni-W-Co/SiC Composite Layer with Oil Lubrication,” Surface Review and Letters, Vol 12, No 4, pp. 573-578, August, 2005.
[26] Wu, Y.Y., Zhang, G.D., and Tang, W.J., “Research of Fiber/Graphite Composite Brush,” Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, pp. 315-322,1995.
[27] Du, J.H., Yue, T.M., and Man, H.C., “Electro-Plating of Aluminum-Based Composites for Eliminating Carbides Formation in Laser Welding,” International SAMPE Symposium and Exhibition (Proceedings), Evolving Technologies for the Competitive Edge , Vol 42, No 1, pp. 783-792,1997.
[28] Dong, S.Y., Xu, B.S., Ma, S.N., and Tu, W.Y., “Properties and Strengthening Mechanism of Brush Plated Nanoparticle Reinforced Composite Coatings,” Transactions of Nonferrous Metals Society of China (English Edition), Vol 14, No SUPPL. 2, pp. 182-185, October, 2004.
[29] Zhang, B., Xu, B.S., Dong, S.Y., and Wu, B., “Structure and Wear Resistance at Elevated Temperature of Auto Brush-Plating n-Al2O3/Ni Composite Coatings,” Key Engineering Materials, Vol 373-374, pp. 523-526, 2008.
[30] Xu, J., Xie, X.S., Xu, Z., and Liu, W.J., “XPS Study of the Corrosion Resisting Composite Alloying Layer Obtained by Double Glow Plasma with the Brush Plating Ni Interlayer,” Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), Vol 11, No 2, pp. 151-156, April, 2004.
[31] Lin, W.J., Chen, J.X., Chen, J.Z., and Chen, S.Y., “Composite Brush-Plated Coating with Application in the Die Industries,” Metal Finishing, Vol 96, No 5, pp. 3, May, 1998.
[32] Zhai, G.J., Liu, J.J., Zhu, B.L., Zhang, X.S., and Yang, S.R., “Role of Cerium in the Resistance of An MoS2-Containing Composite Brush Plating Layer to Humid Atmosphere,” Tribology Transactions, Vol 39, No 3, pp. 715-719, Jul, 1996.
[33] Golanski, D.A. and Grzes, J., “The Numerical Analysis of Residual Stresses in Surface Layers Deposited by Brush-Plating Method,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol 220, No 3, pp. 429-437, 2006.
[34] Tu, W.Y., Xu, B.S., Dong, S.Y., Jiang, B., and Du, L.Z., “Effect of n-Al2O3 on Electrochemical Nucleation and Chemical Binding Interaction in Nickel Electrodeposition,” Transactions of Nonferrous Metals Society of China (English Edition), Vol 15, No 4, pp. 889-896, August, 2005.
[35] Subramanian, B., Mohan, S., and Jayakrishnan, S., “Structural, Microstructural and Corrosion Properties of Brush Plated Copper-Tin Alloy Coatings,” Surface and Coatings Technology, Vol 201, No 3-4, pp. 1145-1151, Oct 5, 2006.
[36] Papachristos, V.D., Panagopoulos, C.N., Leisner, P., Olsen, M.B., and Wahlstrom, U., “Sliding Wear Behaviour of Ni-P-W Composition-Modulated Coatings,” Surface & Coatings Technology, Vol 105, pp. 224-231, 1998.
[37] Guo, Z.C., Zhu, X.Y., Xu, R.D., and Yang, X.W., “Cathodic Process and Wear Resistance of Electro-deposited RE-Ni-W-P-SiC Composite Coating,” Acta Metallurgica Sinica (English Letters), Vol 15, pp. 369-374, 2002.
[38] Hu, S.B., Tu, J.P., Mei, Z., Li, Z.Z., and Zhang, X.B., “Adhesion Strength and High Temperature Wear Behaviour of Ion Plating TiN Composite Coating with Electric Brush Plating Ni-W Interlayer,” Surface and Coatings Technology, Vol 141, pp. 174-181, 2001.
[39] Jiang, X., Liu, W.J., Dong, S.Y., and Xu, B.S., “High Temperature Tribology Behaviors of Brush Plated Ni-W-Co/SiC Composite Coating,” Surface and Coatings Technology, Vol 194, pp. 10-15, 2005.
[40] Guo, Z.C., Liu, H.K., Wang, Z.Y., and Wang, M., “Properties of Electrodeposited Amorphous Ni-W-P-SiC Composite Coatings,” Acta Metallurgica Sinica (English Edition), Series A: Physical Metallurgy & Materials Science, Vol 9, pp. 44-48, 1996.
[41] Steffani, C.P., Dini, J.W., Groza, J.R., and Palazoglu, A., “Electrodeposition and Corrosion Resistance of Ni-W-B Coatings,” Journal of Materials Engineering and Performance, Vol 6, pp. 413-416, 1997.
[42] Agladze, T., Bagaev, S., Gabe, D., Kudryavtsev, V., Raub, Ch., Schachameyer, S., Spyrelis, N., and Tsupak, T., “Comparison of Physicochemical Properties of Cr, Ni-P, Ni-Mo, Ni-W-P and Mn-Zn Alloys Coatings,” Transactions of the Institute of Metal Finishing, Vol 75, pp. 30-34, 1997.
[43] Jie, X.H., Chen, Y.D., and Xie, G.R., “Friction and Wear Behavior of Brush Plated Ni-W(D) Layer in Oil Lubrication Sliding Against A Mild Steel,” Mocaxue Xuebao/Tribology, Vol 22, pp. 180-183,2002.
[44] Li, A.C., Yao, S.W., and Guo, H.T., “Preparation of (Ni-W)-SSiC Composite-Coating by Suing the Electrodeposition Method,” Gongneng Cailiao/Journal of Functional Materials, Vol 26, pp. 275-277, 1995.
[45] Rauscher, G., Rogoll, V., Baumgaertner, M.E., and Raub, Ch.J., “Investigation of the Dissolution Behaviour of Electrodeposited Ni-W Layers in Concentrated Hydrogen Chloride Solution,” Transactions of the Institute of Metal Finishing, Vol 71, pp. 95-98,1993.
[46] Guo, Z.C., Zhu, X.Y., and Xu, R.D., “Effects of Pulse Current on Properties of Electrodeposited RE-Ni-W-P-SiC Composite Coating,” Transactions of Nonferrous Metals Society of China (English Edition), Vol 14, pp. 140-143, 2004.
[47] Palaniappa, M. and Seshadri, S.K., “Tribological Behaviour of Electroless Ni-W-P Deposits,” Proceedings of the International Conference on Advances in Surface Treatment: Research and Applications, ASTRA, Vol 2004, pp. 109-114, 2004.
[48] Ma, K.Y., Guo, Z.C., Wen, M.F., Yang, X.W., and Han, F., “Study on Structure and Properties of Ni-W-SiC Composite Coating,” Acta Metallurgica Sinica (English Letters), Vol 10, pp. 419-424, 1997.
[49] Li, J., Hu, X.G., and Wang, D.L., “Effects of Codeposited Tungsten on The Properties of Low-Phosphorus Electroless Nickel Coatings,” Plating and Surface Finishing, Vol 83, pp. 62-64,1996.
[50] Panagopoulos,C.N., Papachristos, V.D., and Christoffersen, L.W., “ Lubricated Sliding Wear Behaviour of Ni-P-W Multilayered Alloy Coatings Produced by Pulse Plating,” Thin Solid Films, Vol. 366, pp. 155-163, 2000.
[51] Schuh, C.A., Nieh, T.G., and Iwaski, H., “The Effect of Solid Solution W Additions on the Mechanical Properties of Nanocrystalline Ni,” Acta Materialia, Vol 51, pp. 431-443, 2003.
[52] Wang, Y. and Tung, S.C., “Scuffing and Wear Behavior of Aluminum Piston Skirt Coatings Against Aluminum Cylinder Bore,” Wear, Vol. 225-229, No. II, pp. 1100-1108, 1997.
[53] Maurin, G. and Lavanant, A., “Electrodeposition of Nickel/Silicon Carbide Composite Coatings on A Rotating Disc Electrode,” Journal of Applied Electrochemistry, Vol.25, No.12, pp. 1113-1121, Dec, 1995.
[54] Garcia, I., Fransaer, J., and Celis, J. P., “Electrodeposition and Sliding Wear Resistance of Nickel Composite Coatings Containing Micron and Submicron SiC Particles,” Surface & Coatings Technology, Vol. 148, No. 2-3, pp. 171-178, 2001.
[55] Shao, I., Vereecken, P. M., Cammarata, R. R., and Searson, P. C., “Kinetics of Particle Codeposition of Nanocomposites,” Journal of the Electrochemical Society, Vol. 149, No. 11, pp. C610-C614, 2002.
[56] Wang, S. C. and Wei, W. C. -J., “Kinetics of Electroplating Process of Nano-Sized Ceramic Particle/Ni Composite,” Materials Chemistry and Physics, Vol. 78, pp. 574-580, 2003.
[57] Shao, I., Vereecken, P.M., Chien, C.L., Searson, P.C., and Cammarata, R.C., “Synthesis and Characterization of Particle-Reinforced Ni/Al2O3 Nanocomposites,” Journal of Materials Research, Vol. 17, No. 6, pp. 1412-1418, June, 2002.
[58] Berkh, O., Eskin, S., and Zahavi, J., “Properties of Electrodeposited Ni-P-SiC Composite Coatings,” Metal Finishing, Vol. 94, No. 3, pp. 35-40, Mar, 1996.
[59] Shawki, S. and Abdel Hamid, Z., “Deposition of High Wear Resistance of Ni- Composite Coatings,” Aircraft Engineering and Aerospace Technology, Vol. 69, No. 3, pp. 432-439, 1997.
[60] Orlovskaja, L., Periene, N., Kurtinaitiene, M., and Survilene, S., “Ni-SiC Composite Plated Under a Modulated Current,” Surface and Coatings Technology, Vol. 111, No. 2-3, pp. 234-239, Jan 29, 1999.
[61] Gao, J.Q., Wu, Y.T., Liu, L., and Hu, W.B., “Crystallization Behavior of Nanometer-Sized Al2O3 Composite Coatings Prepared by Electroless Deposition”, Materials Letters, Vol. 59, No. 2-3,pp. 391-394, February, 2005.
[62] Marshall, G.W., Lewis, D.B., Clayton, D., Blake, K., and Dodds, B., “The Electrodeposition of Ni-P-Al2O3 Deposits”, Surface and Coatings Technology, Vol 96, pp. 357-358, 1997.
[63] Lin, K.L. and Lai, P.J., “Structure and Properties of Electroless Ni-P-Al2O3 Deposits”, Plating and Surface Finishing, Vol. 76, No. 1, pp. 48-50, Jan, 1989.
[64] Zhou, G.H. and Ding, H.Y., “Preparation of Composite Coating of Amorphous Ni-P alloy with Nano-Al2O3”, Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, Vol. 25, No. 4, pp. 81-84.21, August, 2004. & Wang, S.C. and Wei, W.C.J., Materials Chemistry and Physics, Vol.78,pp. 574-580, 2003.
[65] Huang, X.M., Wu, Y., and Qian, L., “The Tribological Behavior of Electroless Ni-P-SiC (Nanometer Particles) Composite Coatings,” Plating and Surface Finishing, Vol. 91, No. 7, pp. 46-48, 2004.
[66] Leon, O.A. and Staia, M.H., “Influence of Heat Treatment on Tribological Behaviour of Ni-P Autocatalytic Coatings,” Surface Engineering, Vol. 15, No 5, pp. 391-394, 1999.
[67] Holmberg, K., Matthews, A., and Ronkainen, H., “Coatings Tribology - Contact Mechanisms and sSurface Design,” Tribology International, Vol. 31, No. 1-3, pp. 107-120, 1998.
[68] Wong, H.C., Umehara N., and Kato, K., “Effect of Surface Roughness on Friction of Ceramics Sliding in Water,” Wear, Vol. 218, No. 2, pp. 237-243, 1998.
[69] Ye, Z., Cheng, H.S., and Chang, N.S., “Wear Characteristics of Nickel/Silicon Carbide Composite Coating in Lubricated Reciprocating Contacts,” Tribology Transactions, Vol. 39, No. 3,pp. 527-536, 1996.
[70] Benea, L., Bonora, P.L., Borello, A., and Martelli, S., “Wear Corrosion Properties of Nano-Structured SiC-Nickel Composite Coatings Obtained by Electroplating,” Wear, Vol. 249, No. 10-11,pp. 995-1003, 2001.
[71] Wang, S.C. and Wei, W.C.J., “Characterization of Electroplated Ni/SiC and Ni/Al2O3 Composite Coatings Bearing Nanoparticles,” Journal of Materials Research, Vol. 18, No. 7, pp. 1566-1574, 2003.
[72] Weil, R., “Origins of Stress in Electrodeposits- 1,” Plating, Vol. 57, pp. 1231-1237, 1970.
[73] 梁志杰,現代表面鍍覆技術問答,化學工業出版社,北京,第1-335頁,2004.3。
[74] 劉仁志,實用電鑄技術,化學工業出版社,北京,第4-94頁,2006.9。
[75] 陳天玉,複合鍍鎳和特種鍍鎳,化學工業出版社,北京,第12-17頁,2008.10。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top