跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡伯修
研究生(外文):Chien, Po-Hsiu
論文名稱:SS430不鏽鋼及高碳鋼雙極板鉻化鍍層特性之研究
論文名稱(外文):The study in characteristics of chromized coating on SS430 stainless steel and high-carbon steel bipolar plates
指導教授:葛明德葛明德引用關係
指導教授(外文):Ger, Ming-Der
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:材料科學碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:130
中文關鍵詞:鉻鎳共滲
外文關鍵詞:chromium-nickel co-deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:486
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究係以AISI 1080碳鋼或SS430不鏽鋼為基材,利用輥軋加工後之試片產生含許多缺陷的活化層或電鍍鎳基合金後之附加性微米晶結構層等活化前處理,並配合低溫(700℃)鉻化製程,以改善其抗蝕性能及接觸阻抗。粉浴製程的粉末組成包含主要金屬粉末(鉻-鎳),鹵化物活性劑以及惰性填充劑,各種粉末依比例混合後作為擴散沉積來源,期於表層製備富鉻及含少量鎳之抗蝕鍍層。粉浴後之試片經XRD分析結果顯示(Cr, Fe)7C3 和(Cr, Fe)23C6為鍍層的主要組成相及少量氧化鎳相;於0.5 M硫酸水溶液中進行動電位及靜電位電化學分析。結果顯示,430不鏽鋼經鉻鎳共滲處理後其腐蝕電位由-0.47提升至0.05V,而腐蝕電流由2.6E-3降至9.86E-8 A/cm2;AISI 1080碳鋼鉻鎳共滲處理後其腐蝕電位由-0.5提升至0.4V,腐蝕電流由3.2E-3 降至4.98E-7 A/cm2;而靜電位電化學分析結果顯示,試片經鉻鎳共滲處理後其鍍層均比單純滲鉻鍍層來得穩定,證實其鍍層中若有少量鎳元素,在腐蝕環境中,鉻化鍍層明顯較為穩定,減少鍍層孔蝕現象。
電鍍鎳配合粉浴鉻化之試片其抗蝕性均比單純鉻鎳共滲之試片來得佳,其原因是鍍層表面Fe訊號均大幅減少、鍍層厚度增大之原故,證實在鉻化前電鍍鎳,在相同製程溫度及時間下不僅能促進欲滲元素之擴散速率,並成為Fe元素之阻障層,對於鍍層的抗蝕性能與接觸阻抗上面亦能達到改善效果。
In this study, AISI 1080 carbon steel and SS430 stainless steel are used as the substrates. The rolling or Ni-electroplating technieque is employed as a pretreatment to produce many defects on the surface of the substrate, and then the low temperature (700℃) pack chromium-nickel co-deposition is carried out to improve the corrosion resistance and interfacial contact resistance of the steels. The pack powder mixture composes a codeposition master (chromium-nickel), activator (NH4Cl) and inert filler (Al2O3). The powder mixture is mixed up in accordance with a suitable proportion in order to produce the anti-resistance coatings with rich-chromium and a little amount of nickel. The XRD results show that the coating mainly composes of (Cr, Fe)7C3 and (Cr, Fe)23C6 phases, and little amount of nickel oxides. The co-deposition specimens are conducted with potentiodynamic and potentiostatic test in a 0.5 M H2SO4 solution. The results show that the corrosion potential of SS430 stainless steel treated with chromium-nickel co-deposition can be improved from -0.47 V to 0.05 V, and the corrosion current density can be reduced from 2.6E-3 Acm-2 to 9.86E-8 Acm-2. The corrosion potential of AISI 1080 carbon steel treated with chromium-nickel co-deposition can be improved from -0.5 V to 0.4 V, and the corrosion current density can be reduced from 3.2E-3 Acm-2 to 4.98E-7 Acm-2. Potentiostatic results show that the specimen treated with chromium-nickel co-deposition is more stable than that of simple chromized specimen, which verified that a small amount of nickel in the chromized coating is more stable and can prevent the coating from pitting corrosion in the simulated PEMFC environments.
The Ni-electroplated and chromized specimens exhibit better corrosion resistance than simple chromized specimens as a result of the thicker chromized coating and less amounts of Fe in the coatings, which indicated that the nickel electroplated layer can not only improve the diffusion rate of elements greatly, but alse serve as a barrier layer to enhance the corrosion resistance and interfacial contact resistance of the coating produced in the same processing conditions.
摘要 II
1. 緒論 1
1.1研究背景 1
1.2 研究目的 2
2.文獻回顧與理論基礎 4
2.1 燃料電池種類 4
2.2 燃料電池組成元件 6
2.3質子交換膜燃料電池反應機制與工作原理 7
2.4 腐蝕機構原理 [13] 11
2.4.1 水溶液電化學反應 11
2.4.2 混合電位理論 12
2.4.3 極化曲線 13
2.4.4活性極化與濃度極化 15
2.4.5 金屬活化與鈍化 21
2.5 金屬雙極板設計概念 23
2.5.1 提昇抗蝕性 24
2.5.2 降低接觸阻抗 26
2.5.3 降低製造成本 27
2.5.4添加元素選擇 29
2.6 粉浴鉻化製程 33
2.6.1 粉浴擴散反應機構 33
2.6.2 低溫滲鉻原理 34
2.7 表面活化製程 37
2.7.1 輥軋 37
2.7.2 電鍍 37
2.8 金屬雙極板發展近況 38
3. 實驗方法 43
3.1實驗流程 43
3.2表面活化製程 44
3.3 試片之製備 44
3.4 粉浴製程 44
試片名稱 47
3.5 分析與檢測 48
3.5.1 鍍層結構與組成分析 48
3.5.2 腐蝕性質測試 49
3.5.3 接觸阻抗量測[66] 50
4. 結果與討論 53
4.1 不鏽鋼粉浴鉻化鍍層 53
4.1.1 單純滲鉻與鉻鎳共滲鍍層分析 53
4.2 表面活化處理之不鏽鋼鉻化鍍層 60
4.2.1 輥軋活化之鉻化鍍層 60
4.2.2 電鍍鎳鎢合金之鉻化鍍層 62
4.2.3 電鍍鎳之鉻化鍍層 65
4.3 高碳鋼粉浴鉻化鍍層分析 75
4.3.1 單純滲鉻與鉻鎳共滲鍍層分析 75
4.4 表面活化處理之高碳鋼鉻化鍍層分析 87
4.4.1輥軋活化之鉻化鍍層 87
4.4.2電鍍鎳鎢合金之鉻化鍍層 89
4.4.3電鍍鎳之鉻化鍍層 91
4.5 鉻化鍍層之抗蝕性能 101
4.5.1 SS430不鏽鋼之鉻化鍍層抗蝕性能 101
4.5.2 高碳鋼之鉻化鍍層抗蝕性能 108
4.6 鉻化鍍層之接觸阻抗 115
4.7單電池測試 119
5. 結論 121
參考文獻 122
自傳 131
[1] 陳振源,“未來的綠色能源-燃料電池”,科學發展月刊,第三九一期,第62頁,2005
[2] Reddy, R. G., Nikam, V., V., Collins, S., R., Williams, P., C., Schiroky, G., H., and Henrich, G., W., “Corrosion Resistant Low Temperature Carburized SS 316 as Bipolar Plate Material for PEMFC Application,” Electrochimica Acta, Vol. 53, pp.2743-2750, 2008.
[3]Makkus, R. C., Janssen H., H., and Bruijn F., A., “Stainless Steel for Cost-Competitive Bipolar Plates in PEMFCs,” Fuel Cells Bulletin, Vol. 3, pp. 5-9, 2000.
[4]Chaudhuri, T., Hermann, A., and Spagnol, P., “Bipolar Plates for PEM Fuel Cells:A Review,” International Journal of Hydrogen Energy, Vol. 30, pp. 1297-1302, 2005.
[5]Tawfik, H., Hung, Y., and Mahajan, D., “Metal Bipolar Plates For PEM Fuel Cell-A Review,” Journal of Power Sources, Vol. 163, pp. 755-767, 2007.
[6]El-Enin, S. A., Abdel-Salam, O. E., El-Abd H., and Amin A. M., “New Electroplated Aluminum Bipolar Plate for PEM Fuel Cell,” Journal of Power Sources, Vol. 177, pp. 131-136, 2008.
[7]Wang S. H., Peng, J., Lui W. B., and Zhang J. S., “Performance of the Gold-Plated Titanium Bipolar Plates for the Light Weight PEM Fuel Cells,” Journal of Power Sources, Vol. 162, pp. 486-491, 2006.
[8]Wang S. H., Peng, J., and Lui W. B., “Surface Modification and Development of Titanium Bipolar Plates for PEM Fuel Cells,” Journal of Power Sources, Vol. 162, pp. 485-489, 2006.
[9]Weil K. S., Kim J. Y., Xia G., Coleman J., and Yang G., ”Boronization of Nickel and Nickel Clad Materials for Potential Use in Polymer Electrolyte Membrane Fuel Cells,” Surface & Coatings Technology, Vol. 201, pp. 4436-4441, 2006.
[10]Nikam, V. V., and Reddy R. G., “Corrosion Studies of a Copper-beryllium Alloy in a Simulated Polymer Electrolyte Membrane Fuel Cell Environment.” Journal of Power Sources, Vol. 152, pp. 146-155, 2005.
[11]趙鉅隆,“以鎳基合金鍍層進行鋁合金雙極板表面改質之研究”,碩士論文,國防大學理工學院應用化學研究所碩士論文,第8頁,2007。
[12]Zhou, P., Wu C. W., and Ma G. J., “Contact Resistance Prediction and Structure Optimization of Bipolar Plates.” Journal of Power Sources, Vol. 159, pp. 1115-1122, 2006.
[13] 林信全,“使用磁控濺鍍法製備燃料電池金屬雙極板鎳鋁鍍層之研究”,碩士論文,私立逢甲大學材料科學與工程學系研究所,台中,第30-35頁,2004。
[14] Lee S J., Huang, C. H., and Chen, Y. P., “Investigation of PVD Coating on Corrosion Resistance of Metallic Bipolar Plates in PEM Fuel Cell,” Journal of Materials Processing Technology, Vol. 140, pp. 688-693, 2003.
[15]Wang Y., and Northwood, D. O., “An Investigation of the Electrochemical properties of PVD TiN-coated SS410 in Simulated PEM Fuel Cell Environments,” International Journal of Hydrogen Energy, Vol. 42, pp. 895-902, 2007.
[16] http://www.corrosion-doctors.org/Principles/Conversion.htm.
[17] http://www.corrosionsource.com/technicallibrary/corrdoctors/Modules/Kineti
cs/mages/case1-model.gif.
[18] http://www.corrosionsource.com/technicallibrary/corrdoctors/Modules/Kinetics
/images/case1-2.gif.
[19] http://www.corrosionsource.com/technicallibrary/corrdoctors/Modules/Kinetics
/images/case2-model.gif.
[20] http://www.corrosionsource.com/technicallibrary/corrdoctors/Modules/Kinetics
/images/case2-5.gif.
[21] http://corrosion.kaist.ac.kr/download/2007/chap05.pdf.
[22]Wang Y., and Northwood, D. O., “Effects of O2 and H2 on the Corrosion of SS316L Metallic Bipolar Plate Materials in Simulated Anode and Cathode Environments of PEM Fuel Cells,” Electrochimica Acta, Vol. 52, pp. 6793-6798, 2007.
[23] Nikam, V. V., and Reddy R. G., “Copper Alloy Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell,” Electrochimica Acta, Vol. 51, pp. 6338-6345, 2006.
[24]Jiang, R., and Chu D., “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol. 93, pp. 25-31, 2001.
[25]Pozio A., Silva R. F., Francesco M. D., and Giorgi L., “Nafion Degradation in PEFCs from End Plate Iron Contamination,” Electrochimica Acta, Vol. 48, pp. 1543-1549, 2003.
[26]Kim, K. Y., and Kim K. Y., “A New Alloy Design Concept for Austenitic Stainless Steel with Tungsten Modification for Bipolar Plate Application in PEMFC,” Journal of Power Sources, Vol. 173, pp. 917-924, 2007.
[27]Hornung, R., and Kappelt G., “Bipolar Plate Materials Development Using Fe-based Alloys for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol. 72, pp. 20-21, 1998.
[28] http://upload.wikimedia.org/wikipedia/en/c/c3/Chromium_in_water_pourbiax
_diagram.png.
[29] Hwang, J. J., Weng F. B., and Chan S. H., “Effect of Clamping Pressure on the Performance of a PEM Fuel Cell,” Journal of Power Sources, Vol. 166, pp. 149-154, 2007.
[30] Davies, D. P., Adcock P. L., Turpin M., and Rowen S. J., “Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol. 86, pp. 237-242, 2000.
[31]Davies, D. P., Adcock, P. L., Turpin, M., and Rowen S. J., “Bipolar Plate Materials for Solid Polymer Fuel Cells,” Journal of Applied Electrochemistry, Vol. 30, pp. 101-105, 2000.
[32]Wang, H., Sweikart, M. A., and Turner, J. A., “Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol. 115, pp. 243-251, 2003.
[33]Wang, H., and Turner, J. A., “Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol. 128, pp. 193-200, 2004.
[34]Silva, R. F., Franchi, D., Leone, A., Pilloni, L., Masci, A., and Pozio, A., ”Surface Conductivity and Stability of Metallic Bipolar Plate Materials for Polymer Electrolyte Fuel Cells,” Electrochimica Acta, Vol. 51, pp. 3592-3598, 2006.
[35]Lin, G., Shih, A. J., and Hu S. J., “A Micro-scale Model for Predicting Contact Resistance Between Bipolar Plate and Gas Diffusion Layer in PEM Fuel Cells,” Journal of Power Sources, Vol. 163, pp. 777-783,2007.
[36]Kraytsberg, A., Auinat, M., and Ein-Eli Y., ”Reduced Contact Resistance of PEM Fuel Cell’s Bipolar Plates Via Surface Texturing,” Journal of Power Sources, Vol. 164, pp. 697-703, 2007.
[37]ScottWeil K., Xia G., Yang Z. G., and Kim J. Y., “Development of a Niobium Clad PEM Fuel Cell Bipolar Plate Material,” International Journal of Hydrogen Energy, Vol. 32, pp. 3724-3733, 2007.
[38]Fleury, E., Jayaraj, J., Kim,Y. C., Seok, H. K., Kim K. Y., and Kim, K. B., “ Fe-Based Amorphous Alloys as Bipolar Plates for PEM Fuel Cell,” Journal of Power Sources. Vol. 159, pp. 34-37, 2006.
[39]Chen, F. S., Lee, P. Y., and Yeh, M. C., “Thermal Reactive Deposition Coating of Chromium Carbide on Die Steel in a Fluidized Bed Furnace.” Materials Chemistry and Physics, Vol. 53, pp. 19-27, 1998.
[40]Sen, S., “A Study on Kinetics of CrxC-Coated High-chromium Steel by Thermo-reactive Diffusion Technique,” Vacuum, Vol. 79, pp. 63-70, 2005.
[41]Ozdemir, O., Sen, S., and Sen, U., ”Formation of Chromium Nitride Layers on AISI 1010 Steel by Nitro-chromizing Treatment,” Vacuum, Vol. 81, pp. 567-570, 2007.
[42]Wei, C. Y., and Chen, F. S., ”Thermoreactive Deposition/Diffusion Coating of Chromium Carbide by Contact-Free Method,” Materials Chemistry and Physics, Vol. 91, pp. 192-199, 2005.
[43]Perez, F. J., Pedraza, F., Hierro, M. P., Carpintero, M. C., and Mez, C. G., “Chromising of Stainless Steels by the Use of the CVD-FBR Technology,” Surface and Coatings Technology, Vol. 184, pp. 47-54, 2004.
[44]Lee S. Jen., Lai, J. J., and Huang, C. H., “Stainless Steel Bipolar Plates,” Journal of Power Sources, Vol. 145, pp. 362-368, 2005.
[45]Ho W. Yu., Pan, H. Jen., Chang C. L., Wang D. Y., and Hwang, J. J., “Corrosion and Electrical Properties of Multi-Layered Coatings on Stainless steel for PEMFC Bipolar Plate Applications,” Surface and Coatings Technology, Vol. 204, pp. 1297-1301, 2007.
[46]Wang, H., Brady, M. P., Teeter G., and Turner J. A., “Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 1: Model Ni-50Cr and Austenitic 349(TM) Alloys,” Journal of Power Sources, Vol. 138, pp. 86-93, 2004.
[47] http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Fe-Ni.jpg&dir=FSstel.
[48] http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Cr-Ni.jpg&dir=FSstel.
[49]Koo, C. H., and Yu, T. H., “Pack Cementation Coatings on Ti3Al-Nb Alloys to Modify the High-Temperature Oxidation Properties,” Surface and Coatings Technology, Vol. 126, pp. 171-180, 2000.
[50]Kung, S. C., and Rapp, R. A., “Kinetic Study of Aluminization of Iron by Using the Pack Cementation Technique,” Journal of the Electrochemical Society, Vol. 135, pp. 731-741, 1988.
[51]Bianco, R., Harper, M. A., and Rapp, R. A., “Codepositing Elements by Halide-Activated Pack Cementation,” JOM, Vol. 43, pp. 68-73, 1991.
[52]Lu, K., and Lu, J., “Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment,” Materials Science and Engineering A, Vol. 375-377, pp. 38-45, 2004.
[53]Wang, Z. B., Lu, J., and Lu, K., “Chromizing Behaviors of a Low Carbon Steel Processed by Means of Surface Mechanical Attrition Treatment,” Acta Materialia, Vol. 53, pp. 2081-2089, 2005.
[54]Cao, H., Luo, C. P., Liu, J., and Zou, G., “Phase Transformations in low-Temperature Chromized 0.45 wt.% C Plain Carbon Steel,” Surface and Coatings Technology, Vol. 201, pp. 7970-7977, 2007.
[55]Wang, Z. B., Tao, N. R., Tong, W. P., Lu, J., and Lu, K., “Diffusion of Chromium in Nanocrystalline Iron Produced by Means of Surface Mechanical Attrition Treatment,” Acta Materialia, Vol. 51, pp. 4319-4329, 2003.
[56]Hentall, P. L., Lakeman J. B., Mepsted, G, O., Adcock, P, L., and Moore, J. M., “New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors,” Journal of Power Sources, Vol. 80, pp. 235-2419, 1999.
[57]Lee, S. J., and Lai, J. J., “The Effects of Electropolishing (EP) Process Parameters on Corrosion Resistance of 316L Stainless Steel,” Journal of Materials Processing Technology . Vol. 140, pp. 206-210, 2003.
[58] Lee, S. J., and Lai, J. J., “The Effects of Electropolishing (EP) Process Parameters on Corrosion Resistance of 316L Stainless Steel,” Journal of Materials Processing Technology . Vol. 140, pp. 206-210, 2003.
[59] Wang, J., Sun, J, Tian, R., and Jing, X., “Plain Carbon Steel Bipolar Plates for PEMFC,” Rare Metals, Vol. 25, pp. 235-239, 2006.
[60] Nam, D. G., and Lee, H. C., “Thermal Nitridation of Chromium Electroplated AISI316L Stainless Steel for Polymer Electrolyte Membrane Fuel Cell Bipolar Plate,” Journal of Power Sources. Vol. 170, pp. 268-274, 2007.
[61] Wang Y., and Northwood, D. O., “An Investigation Into TiN-Coated 316L Stainless Steel as a Bipolar Plate Material for PEM Fuel Cells,” Journal of Power Sources. Vol. 165, pp. 293-298, 2007.
[62] Tian, R. J., Sun, J. C., and Wang, L., “Effect of Plasma Nitriding on Behavior of Austenitic Stainless Steel 304L Bipolar Plate in Proton Exchange Membrane Fuel Cell,” Journal of Power Sources. Vol. 163, pp. 719-724, 2007.
[63] Fukutsuka, T., Yamaguchi, T., Miyano, S. I., Matsuo, Y., Sugie, Y., and Ogumi, Z., “Carbon-Coated Stainless Steel as PEFC Bipolar Plate Material,” Journal of Power Sources. Vol. 174, pp. 199-205, 2007.
[64] Cho, K. H., Lee, W. G., Lee, S. B., and Jang, H., “Corrosion Resistance of Chromized 316L Stainless Steel for PEMFC Bipolar Plates.” Journal of Power Sources, Vol. 178, pp. 671-676, 2008.
[65] Wang, H., Sweikart, M. A., and Turner, J. A., “Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources. Vol. 115, pp. 243-251, 2003.
[66] 吳旻昇,“以粉浴鍍層改良燃料電池薄型金屬雙極板之耐蝕性能研究”,碩士論文,國防大學理工學院兵器系統工程研究所,桃園,第50-51頁,2006年5月。
[67] Lothongkum, G., Chaikittisilp, S., Lothongkum, A. W., “XPS Investigation of Surface Films on High Cr-Ni Ferritic and Austenitic Stainless Steels,” Applied Surface Science, Vol. 218, pp. 203-210, 2003.
[68] Tabet, N., Allam, I., and Yin, R. C., “X-ray Photoelectron Spectroscopy Investigation of the Carburization of 310 Stainless Steel,” Applied Surface Science, Vol. 220, pp. 259-272, 2003.
[69] Detroye, M., Reniers, F., Buess-Herman, C., and Vereecken, J., “AES-XPS Study of Chromium Carbides and Chromium Iron Carbides,” Applied Surface Science, Vol. 144-145, pp. 78-82, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top