跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴耀祥
研究生(外文):Lai Yew-Shyang
論文名稱:聚胺基甲酸酯/無機物混成複合材料製備及應用研究
論文名稱(外文):Preparation and Application of Polyurethane/inorganic hybrid composites
指導教授:吳國輝吳國輝引用關係
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:146
中文關鍵詞:阻燃層膠合劑改質聚胺基甲酸酯溶膠-凝膠法
相關次數:
  • 被引用被引用:5
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以新一代含矽有機-無機奈米材料:多面體聚倍半矽氧烷寡聚物(POSS, Polyhedral Oligomeric Silsesquioxane)、矽化物及鋯化物,採用溶膠-凝膠(Sol-Gel)法改質聚胺基甲酸酯(PU, Polyurethane),製備PU/POSS、PU/SiO2、PU/ZrO2及PU/(SiO2+ZrO2)等PU混成複合材料,作為固體火箭發動機阻燃層膠合劑,並以旋轉塗佈法將混成物披覆於6061-T6 及 2024-T3鋁合金上,作為防腐蝕薄膜。藉由紅外線光譜儀(FTIR)與膠體滲透層析儀(GPC)鑑定混成物化學結構及分子量;微差掃描熱卡計(DSC)、熱重損失分析儀(TGA)與熱示差掃描分析儀(DTA)探討混成物之熱性質及安定性;X光繞射分析儀(XRD)、掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM)探討混成物奈米結晶及表面微觀形態的變化;動態機械分析儀(DMA)、熱機械分析儀(TMA)及萬能試驗機進行混成物機械性質分析;電化學交流阻抗頻譜(EIS)、中性鹽霧試驗分析混成物耐腐蝕性能。實驗結果顯示所合成之PU混成物玻璃轉化溫度(Tg)、熱安定性質、活化能、表面形態、機械性質及耐腐蝕性能會隨著奈米粒子含量增加而改善。另本研究合成之PU混成物添加固體無機補強材料製備PU-Filler共聚物,經由乙炔/氧高溫火焰試驗觀察,耐燒蝕性能佳,可作為固體推進劑火箭發動機耐燒蝕阻燃層製作應用參考。
Hybrid composites based on polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS), polyurethane/zirconium dioxide (PU/ZrO2), polyurethane/silica (PU/SiO2), polyurethane/(zirconium dioxide + silica) (PU/(SiO2+ZrO2)) were synthesized through a sol–gel technique and act as binder of insulator for rocket motor. Hydroxy-terminated polybutadiene (HTPB), isophorone diisocyanate (IPDI), tetrapropoxyzirconium (TPOZ), tetraethoxysilane (TEOS) and trans-cyclohexane diolisobuty-POSS (POSS) were used as precursors for these hybrid composites. The effects induced by the media material structure, type and ratio on the thermal, mechanical properties, flame resistance and burn resistance of hybrids were investigated. The homogeneous dispersion of POSS, SiO2 and ZrO2 in the PU matrices was evidenced by X-Ray diffractometer (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM). Thermal stability and mechanical properties of these hybrids have been improved over the pure polyurethane analyzed by differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). Moreover, these hybrid films were deposited via spin coating onto aluminum alloy (6061-T6 and 2024-T3) in order to improve the corrosion protection. Potentio-dynamic and salt-spray analysis revealed that the hybrid films provided an exceptional barrier and corrosion protection in comparison with PU and untreated aluminum alloy substrates
目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 x
圖目錄 xii
1. 緒論 1
1.1 研究動機 1
1.2 研究目的 4
1.3 研究範圍 6
1.4 文獻回顧 7
1.4.1 聚胺基甲酸酯之介紹 7
1.4.2 有機/無機混成複合材料之介紹 10
1.4.3 多面體聚倍半矽氧烷寡聚物之介紹 15
1.4.4 金屬防腐蝕及電化學測試之介紹 21
1.5 研究方法 27
1.5.1 結構分析 27
1.5.2 型態微觀鑑定 29
1.5.3 熱性質試驗 30
1.5.4 機械性能測試 31
1.5.5 附著力測試 32
1.5.6 熱裂解動力學分析 33
1.5.7 耐腐蝕試驗 34
2. 聚胺基甲酸酯/無機物混成複合材料合成及特性研究 36
2.1 PU/SiO2混成物合成及特性研究 36
2.1.1 前言 36
2.1.2 實驗部分 37
2.1.2.1 化學藥品 37
2.1.2.2 PU/SiO2混成複合材料之製備 38
2.1.2.3 鑑定及特性研究 39
2.1.2.4 實驗架構 40
2.1.3 結果與討論 41
2.1.3.1 結構及型態分析 41
2.1.3.2 熱性質分析 45
2.1.3.3 動態機械性質分析 52
2.1.4 結論 54
2.2 PU/POSS混成物合成及特性研究 55
2.2.1 前言 55
2.2.2 實驗部分 56
2.2.2.1 化學藥品 56
2.2.2.2 PU/POSS混成複合材料之製備 56
2.2.2.3 鋁合金試片防蝕薄膜之製備 56
2.2.2.4 鑑定及特性研究 57
2.2.2.5 實驗架構 58
2.2.3 結果與討論 59
2.2.3.1 結構及型態分析 59
2.2.3.2 熱性質分析 65
2.2.3.3 動態機械性質分析 69
2.2.3.4 機械性質分析 70
2.2.3.5 電化學測試 72
2.2.3.6 鹽霧試驗 76
2.2.4 結論 78
2.3 PU/ZrO2混成物合成及特性研究 79
2.3.1 前言 79
2.3.2 實驗部分 79
2.3.2.1 化學藥品 79
2.3.2.2 TPOZ溶膠(Sol)之製備 79
2.3.2.3 PU/ZrO2混成複合材料之製備 80
2.3.2.4 鋁合金試片防蝕薄膜之製備 80
2.3.2.5 鑑定及特性研究 80
2.3.2.6 實驗架構 82
2.3.3 結果與討論 83
2.3.3.1 結構及型態分析 83
2.3.3.2 熱性質分析 85
2.3.3.3 動態機械性質分析 89
2.3.3.4 機械性質分析 91
2.3.3.5 電化學測試 91
2.3.4 結論 95
2.4 PU/(SiO2+ZrO2)混成物合成及特性研究 96
2.4.1 前言 96
2.4.2 實驗部分 96
2.4.2.1 化學藥品 96
2.4.2.2 TEOS和TPOZ溶膠(Sol)之製備 96
2.4.2.3 PU/(SiO2+ZrO2)混成複合材料製備 96
2.4.2.4 鋁合金試片防腐蝕薄膜之製備 97
2.4.2.5 鑑定及特性研究 97
2.4.2.6 實驗架構 98
2.4.3 結果與討論 99
2.4.3.1 結構及型態分析 99
2.4.3.2 熱性質分析 102
2.4.3.3 動態機械性質分析 107
2.4.3.4 機械性質分析 108
2.4.3.5 附著力測試 110
2.4.3.6 電化學測試 111
2.4.3.7 鹽霧試驗 111
2.4.4 結論 114
2.5 PU/無機物混成物合成及特性研究 115
2.5.1 前言 115
2.5.2 實驗部分 115
2.5.2.1 化學藥品 115
2.5.2.2 PU-Filler複合材料之製備 116
2.5.2.3 鑑定及特性研究 116
2.5.2.4 實驗架構 118
2.5.3 結果與討論 119
2.5.3.1 型態分析 119
2.5.3.2 熱性質分析 121
2.5.3.3 燒蝕性能分析 124
2.5.3.4 機械性質分析 126
2.5.4 結論 127
3. 總結論 128
參考文獻 129
論文發表 145
自傳 146
參考文獻

[1] Hartz, W. A., Falls, C., and Meyer, D. A., “Elastomeric Composition for Use as Rocket Insulation,” US Patent 3347047, 1967.
[2] Chase, M. J., “Thermal Insulators for Rocket Motors,” EP Patent 359455, 1990.
[3] Fan, J. L., “Elastomeric Insulating Composition for a Solid Propellant Rocket Motor,” US Patent 2004/229989, 2004.
[4] 范仲甯、張錫邦,“NBR/Kevlar非石綿系火箭阻燃層”,火藥技術,第十七卷第二期,第59-68頁,2001。
[5] 余鳳兒,“改質聚氨酯/聚矽氧烷耐燒蝕材料研究”,博士論文,國立中山大學材料科學研究所,高雄,第1-7頁,2004。
[6] 李宗銘,“耐熱性聚氨酯(PU)樹酯之合成與應用”,工業材料,第90期,第92-95頁,1994。
[7] Eavenas, A., Solid Rocket Propulsion Technology, SNPE, France, pp.415-423, 1993.
[8] Klager, K., “Polyurethanes, the Most Versatile Binder for Solid Composite Propellants, ” AIAA-84-1239, pp.1-8, June, 1984.
[9] 范仲甯,“發動機內壁之絕熱與阻燃”,新新季刊,第廿四卷,第四期,第125-134頁,1996。
[10] 章俊文,“絕熱複合材料性能及應用”,新新季刊,第卅卷,第一期,第62-70頁,2002。
[11] 范仲甯,“發動機阻燃層之設計與驗證”,新新季刊,第廿九卷第四期,第3-12頁,2001。
[12] Benli, S., Yilmazer, U., Pekel, F., and Ozkar, S., “Effect of Fillers on Thermal and Mechanical Properties of Polyurethane Elastomer,” Journal of Applied Polymer Science, Vol. 68, pp.1057-1065, 1998.
[13] 中國民用航空雜誌,“ Aircraft Corrosion and Maintenance”,北京,2002。
[14] Wapner, K., Stratmann, M., and Grundmeier, G., “Structure and Stability of Adhesion Promoting Aminopropyl Phosphonate Layers at Polymer/Aluminium Oxide Interfaces,” International Journal of Adhesion & Adhesives, Vol. 28, pp.59-70, 2007.
[15] Buytaert, G., Premendra, J. H. W. de Wit, Katgerman, L.,Kernig, B., Brinkman, H. J., and Terryn, H., “Electrochemical Investigation of Rolled-in Subsurface Layers in Commercially Pure Aluminium Alloys with the Microcapillary Cell Technique,” Surface & Coatings Technology, Vol. 201, pp.4553-4560, 2007.
[16] Lunder, O., Walmsley, J. C., Mack, P., and Nisancioglu, K., “Formation and Characterization of a Chromate Conversion Coating on AA6060 Aluminium,” Corrosion Science, Vol. 47, pp.1604-1624, 2005.
[17] Eppensteiner, F. W. and Jenkins, M. R., “Chromate Conversion Coatings,” Metal Finishing, Vol. 99, pp.494-506, 2001.
[18] Zhao, J., Xia, L., Sehgal, A., Lu, D., McCreery, R. L., and Frankel, G. S., “Effects of Chromate and Chromate Conversion Coatings on Corrosion of Aluminum Alloy 2024-T3,” Surface and Coatings Technology, Vol. 140, pp. 51-57, 2001.
[19] Laxman, R. S. and More, S., “Reduction of Hexavalent Chromium by Streptomyces Griseus,” Minerals Engineering, Vol. 15, pp.831-837, 2002.
[20] Myers, J. M., Antholine, W. E., and Myers, C. R., “Hexavalent Chromium Causes the Oxidation of Thioredoxin in Human Bronchial Epithelial Cells,” Toxicology, Vol. 246, pp.222-233, 2008.
[21] 牟中原、陳家俊,“奈米材料研究發展”,科學發展月刊,第28卷,第4期,2003。
[22] Ray, S. S. and Okamoto, M., “Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing,” Progress in Polymer Science, Vol. 28, pp.1539-1641, 2003.
[23] Liu, P., “Polymer Modified Clay Minerals: A Review,” Applied Clay Science, Vol. 38, pp.64-76, 2007.
[24] Agag1, T. and Takeichi, T., “Polybenzoxazine-Montmorillonite Hybrid Nano- composites: Synthesis and Characterization,” Polymer, Vol. 41, pp.7083-7090, 2000.
[25] Jang, S. H., Han, M. G., and Im, S. S., “Preparation and Characterization of Conductive Polyanilinersilica Hybrid Composites Prepared by Sol-Gel Process,” Synthetic Metals, Vol. 110, pp.17-23, 2000.
[26] Milella, E., Cosentino, F., Licciulli, A., and Massaro, C., “Preparation and Characterisation of Titania/Hydroxyapatite Composite Coatings Obtained by Sol-Gel Process,” Biomaterials, Vol. 22, pp.1425-1431, 2001.
[27] Kimura, I., Kase, T., Taguchi, Y., and Tanaka, M., “Preparation of Titania/Silica Composite Microspheres by Sol-Gel Process in Reverse Suspension,” Materials Research Bulletin, Vol. 38, pp.585-597, 2003.
[28] Deng, J., Ding ,X., Zhang, W., Peng, Y., Wang, J., Long, X., Li, P., and Chan, A. S. C., “Carbon Nanotube-Polyaniline Hybrid Materials,” European Polymer Journal, Vol. 38, pp.2497-2501, 2002.
[29] Wei, L., Tang, T., and Huang, B. “Novel Acidic Porous Clay Heterostructure with Highly Ordered Organic-Inorganic Hybrid Structure: One-Pot Synthesis of Mesoporous Organosilica in the Galleries of Clay,” Microporous and Mesoporous Materials, Vol. 67, pp.175-179, 2004.
[30] Lu, Y. C. and Kuo, K. K., “Thermal Decomposition Study of Hydroxyl- Terminated Polybutadiene (HTPB) Solid Fuel,” Thermochimica Acta, Vol. 275, pp.181-191, 1996.
[31] Zheng, L., Waddon, A. J., Farris, R. J., and Coughlin, E. B., “X-ray Characteri- zations of Polyethylene Polyhedral Oligomeric Silsesquioxane Copolymers,” Macromolecules, Vol. 35, pp.2375-2379, 2002.
[32] Ni, Y., Zheng, S., and Nie, K., “Morphology and Thermal Properties of Inorganic-Organic Hybrids Involving Epoxy Resin and Polyhedral Oligomeric Silsesquioxanes,” Polymer, Vol. 45, pp.5557-5568, 2004.
[33] Ramaswamy, P., Seetharamu, S., Varma, K. B. R., and Rao, K. J., “Al2O3-ZrO2 Composite Coatings for Thermal-Barrier Applications,” Composites Science and Technology, Vol. 57, pp.81-89, 1997.
[34] Ahmaniemi, S., Vippola, M., Vuoristo, P., Mantyla, T., Cernuschi, F., and Lutterotti, L., “Modified Thick Thermal Barrier Coatings: Microstructural Characterization,” Journal of the European Ceramic Society, Vol. 24, pp. 2247-2258, 2004.
[35] Bansal, N. P. and Zhu, D., “Thermal Properties of Oxides with Magnetoplumbite Structure for Advanced Thermal Barrier Coatings,” Surface and Coatings Technology, Vol. 202, pp.2698-2703, 2008.
[36] 卞獨敏、陳大明,“減煙襯層開發研究(I)-配方性能預估研究”,CSIRR- 85D-M12,中科院,第15頁,1995。
[37] Hepburn, C., Polyurethane Elastomers, Applied Science Publishers, London and New York, pp.2-55, 1982.
[38] Bruin, P. F., Polyurethane Technology , Interscience Publishers, New York, pp.1-18, 1979.
[39] 翁漢元,“我國聚氨酯膠黏劑工業的回顧與展望”,聚氨酯工業,第3期,第1頁,1994。
[40] 賴耿陽,聚脲脂樹脂PU原理與實用,復漢出版社,台南,第145-146頁,1993。
[41] Crawford, D. M., Bass, R. G., and Haas, T. W., “Strain Effects on Thermal Transitions and Mechanical Properties of Thermoplastic Polyurethane Elastomers,” Thermochimica Acta, Vol. 323, pp.53-63, 1998.
[42] 伍德馨、楊祖印,“HTPB反應特性機構及其應用之探討”,火藥技術,第4卷,第1期,第92頁,1988。
[43] Ganesh, K., Sundarrajan, S., and Kishore, K., “Primary Pyrolysis Products of Hydroxy-Terminated Polybutadiene,” Macromolecules, Vol. 33, pp.326-330, 2000.
[44] 呂世源,“奈米新世界”,科學發展,359期,第4-7頁,2002。
[45] 李世光等,奈米科學與技術導論,國科會科學技術資料中心,第1-5頁,2002。
[46] Zhu, Y. and Sun, D. X., “Preparation of Silicon Dioxide/Polyurethane Nanocomposites by a Sol-Gel Process,” Journal of Applied Polymer Science, Vol. 92, pp.2013-2016, 2004.
[47] Ogata, N., Kawakage, S., Ogawa, T., Yanagawa, T., and Ogihara, T., “Poly (Vinylalcohol)-Clay and Poly(Ethylene Oxide)-Clay Blends Prepared Using Water as Solvent,” Journal of Applied Polymer Science, Vol. 66, pp.573-581, 1997.
[48] Cho, J. W. and Paul, D. R., “Nylon 6 Nanocomposites by Melt Compounding ,” Polymer, Vol.42, pp.1083-1094, 2001.
[49] Shelley, J. S., Mather, P. T., and Devries, K. L., “Reinforcement and Environ- mental Degradation of Nylon-6/Clay Nanocomposites,” Polymer, Vol. 42, pp.5849-5858, 2001.
[50] Usuki, A., Hasegawa, N., Kadoura, H., and Okamoto, T., “Three-Dimensional Observation of Structure and Morphology in Nylon-6/Clay Nanocomposite,” Nano Letters, Vol. 1, pp.271-272, 2001.
[51] Kin, B. K., Seo, J. W., and Jeong, H. M., “Morphology and Properties of Waterborne Polyurethane/Clay Nanocomposites,” European Polymer Journal, Vol. 39, pp.85-91, 2003.
[52] Finnigan, B., Martin, D., Halley, P., Truss, R., and Campbell, K., “Morphology and Properties of Thermoplastic Polyurethane Nanocomposites Incorporating Hydrophilic Layered Silicates,” Polymer, Vol. 45, pp.2249-2260, 2004.
[53] 呂奇明,“低介電多面體倍半矽氧烷寡聚物(POSS)/聚亞醯胺奈米複合材料之合成與性質分析”,國立交通大學博士論文,新竹,2003。
[54] 李建裕,“有機/無機多面體矽氧烷寡聚物奈米複合材料”,國立交通大學碩士論文,新竹,2002。
[55] Yei, D. Ru., Kuo, S. W., Su, Y. C., and Chang, F. C., “Enhanced Thermal Properties of PS Nanocomposites Formed from Inorganic POSS-Treated Montmorillonite,” Polymer, Vol. 45, pp.2633-2640, 2004.
[56] Abad, M. J., Barral, L., Fasce, D. P., and Williams, R. J. J., “Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS),” Macromolecules, Vol. 36, pp.3128-3135, 2003.
[57] Schwab, J. J. and Lichtenhan, J. D., “Polyhedral Oligomeric Silsesquioxane (POSS)-Based Polymers,” Applied Organometallic Chemistry, Vol. 12, pp. 707-713, 1998.
[58] 馬正基、楊正乾,“國防軍事用防火、難燃、低煙、無毒複合材料研究之製程與檢測”,國立清華大學自強科學研究中心委託合作研究計畫總結報告,NSC 91-CS-7-007-001,第13-19頁,2003。
[59] Yano, S., Iwata, K., and Kurita, K., “Physical Properties and Structure of Organic-Inorganic Hybrid Materials Produced by Sol-Gel Process,” Materials science and Engineering C, Vol. 6, pp.75-90, 1998.
[60] Rao, A. V. and Bhagat, S. D., “Synthesis and Physical Properties of TEOS-Based Silica Aerogels Prepared by Two Step (Acid-Base) Sol-Gel Process,” Solid State Sciences, Vol. 6, pp.945-952, 2004.
[61] Hegde, N. D. and Rao, A. V., “Organic Modification of TEOS Based Silica Aerogels Using Hexadecyltrimethoxysilane as a Hydrophobic Reagent,” Applied Surface Science, Vol. 253, pp.1566-1572, 2006.
[62] Huang, W. L., Liang, K. M., and Gu, S. R., “Effect of HCl in a Two-Step Sol-Gel Process Using TEOS,” Journal of Non-Crystalline Solids, Vol. 258, pp.234-238, 1999.
[63] Mahfuz, H., Rangari, V. K., Islam, M. S., and Jeelani, S., “Fabrication, Synthesis and Mechanical Characterization of Nanoparticles Infused Polyurethane Foams,” Composites Part A: Applied Science and Manufacturing, Vol. 35, pp.453-460, 2004.
[64] Marino, I. G., Bersani, D., and Lottici, P. P., “Photo-Induced Birefringence in DR1-Doped Sol-Gel Silica and ORMOSILs Thin Films,” Optical Materials, Vol. 15, pp.175-180, 2000.
[65] Chen, X., Lin, L., Li, P., Dai, Y., and Wang, X., “Fluorescent Response of Sol-Gel Derived Ormosils for Optical Ammonia Sensing Film,” Analytica Chimica Acta, Vol. 506, pp.9-15, 2004.
[66] Liu, Y. L., Hsu, C. Y., and Hsu, K. Y., “Poly(Methylmethacrylate)-Silica Nano- Composites Films from Surface-Functionalized Silica Nanoparticles,” Polymer, Vol. 46, pp.1851-1856, 2005.
[67] Yan, S., Yin J., Yang J., and Chen X., “Structural Characteristics and Thermal Properties of Plasticized Poly(L-Lactide)-Silica Nanocomposites Synthesized by Sol-Gel Method,” Materials Letters, Vol. 61, pp.2683-2686, 2007.
[68] Zheludkevich, M. L., Serra, R., Montemor, M.F., Salvado, I. M. M., and Ferreira, M. G. S., “Corrosion Protective Properties of Nanostructured Sol-Gel Hybrid Coatings to AA2024-T3,” Surface & Coatings Technology, Vol. 200, pp.3084-3094, 2006.
[69] Varma, P. C. R., Colreavy, J., Cassidy, J., Oubaha, M., Duffy, B., and McDonagh, C., “Effect of Organic Chelates on the Performance of Hybrid Sol-Gel Coated AA2024-T3 Aluminium Alloys,” Progress in Organic Coatings, Vol. 66, pp.406-411, 2009.
[70] Scott, D. W., “Thermal Rearrangement of Branched-Chain Methylpoly Siloxanes,” Journal of the American Chemical Society, Vol. 68, pp.356-358, 1946.
[71] Brown, J. F. and Vogt, L. H., “The Polycondensation of Cyclohexylsilanetriol,” Journal of the American Chemical Society, Vol. 87, pp.4313-4317, 1965.
[72] Gidden, J., Kemper, R. P., Shammel, E., Fee, P. D., Anderson, S., and Bowers, T. M., “Application of Ion Mobility to the Gas-Phase Conformational Analysis of Polyhedral Oligomeric Silsesquioxanes (POSS),” International Journal of Mass Spectrometry, Vol. 222, pp.63-73, 2003.
[73] Li, G. Z., Wang, L., Toghiani, H., Daulton, L. T., and Pittman Jr, U. C., “Viscoelastic and Mechanical Properties of Vinyl Ester (VE)/Multifunctional Polyhedral Oligomeric Silsesquioxanes (POSS) Nanocomposites and Multifunctional POSS-Styrene Copolymer,” Polymer, Vol. 43, pp.4167-4176, 2002.
[74] Fu, X. B., Hsiao, S. B., Pagola, S., Stephens, P., White, H., Rafailovich, M., Sokolov, J., Mather, T. P., Jeone, G. H., Phillips, S., Lichtenhan, J., and Schwab, J., “Structural Development During Deformation of Polyurethane Containing Polyhedral Oligomeric Silsesquioxanes (POSS) Molecules,” Polymer , Vol. 42, pp.599-611, 2001.
[75] Hoflund, B. G., Gonzalez, R., and Phillips, S., “In Situ Oxygen Atom Erosion Study of Polyhedral Oligomeric Silsesquioxane-Siloxane Copolymer,” Journal of Adhesion Science Technology, Vol. 15, pp.1199-1211, 2001.
[76] Gilman, J. W., Schlitzer, D. S., and Lichtenhan, J. D., “Low Earth Orbit Resistant Siloxane Copolymer,” Journal of Applied Polymer Science, Vol. 66, pp.591-596, 1996.
[77] Xu, H., Kuo, W. S., Lee, S. J., and Chang, F. C., “Preparations Thermal Properties, and Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes,” Macromolecules, Vol. 35, pp.8788-8743, 2002.
[78] Dodiuk, H., Kenig S., Blinsky, I., Dotan, A., and Buchman, A., “Nanotailoring of Epoxy Adhesives by Polyhedral-Oligomeric-Silsesquioxanes (POSS),” International Journal of Adhesion & Adhesives, Vol. 25, pp.211-218, 2005.
[79] Devaux, E., Rochery, M., and Bourbigot, S., “Polyurethane/Clay and Poly- urethane/POSS Nanocomposites as Flame Retarded Coating for Polyeaster and Cotton Fabrics,” Fire and Materials, Vol. 26, pp.149-154, 2002.
[80] Mather, P. T., Ge, Q., and Liu, C., “Shape Memory Polymers Based on Semicrystalline Thermoplastic Polyurethanes Bearing Nanostructured Hard Segments,” US Patent 2004/0116641, 2004.
[81] Jeon, H. G., Mather, P. T., and Haddad, T. S., “Shape Memory and Nanostructure in Poly(Norbornyl-POSS) Copolymers,” Polymer International, Vol. 49, pp.453- 457, 2000.
[82] Bierwagen, G. P., “Reflections on Corrosion Control by Organic Coatings,” Progress in Organic Coatings, Vol. 28, pp.43-48, 1996.
[83] Grundmeier, G., Schmidt, W., and Stratmann, M., “Corrosion Protection by Organic Coatings: Electrochemical Mechanism and Novel Methods of Investigation,” Electrochimica Acta, Vol. 45, pp.2515-2533, 2000.
[84] Bastos, A. C., Ferreira, M. G. S., and Simoes, A. M., “Comparative Electro- chemical Studies of Zinc Chromate and Zinc Phosphate as Corrosion Inhibitors for Zinc,” Progress in Organic Coatings, Vol. 52, pp.339-350, 2005.
[85] Khobaib, M., Reynolds, L. B., and Donley, M. S., “A Comparative Evaluation of Corrosion Protection of Sol-Gel Based Coatings Systems,” Surface and Coatings Technology, Vol. 140, pp.16-23, 2001.
[86] Campestrini, P., Westing, E. P. M., Hovestad, A., and Wit, J. H. W., “Investi- gation of the Chromate Conversion Coating on Alclad 2024 Aluminium Alloy: Effect of the pH of the Chromate Bath,” Electrochimica Acta, Vol. 47, pp.1097-1113, 2002.
[87] Ooij, W. J., Zhu, D., Stacy, M., Seth, A., Mugada, T., Gandhi, J., and PU0mi, P., “Corrosion Protection Properties of Organofunctional Silanes-An Overview,” Tsinghua Science and Technology, Vol. 10, pp.639-664, 2005.
[88] Du, Y. J., Damron, M., Tang, G., Zheng, H., Chu, C. J., and Osborne, J. H. “Inorganic/Organic Hybrid Coatings for Aircraft Aluminum Alloy Substrates,” Progress in Organic Coatings, Vol. 41, pp.226-232, 2001.
[89] Voevodin, N., Jeffcoate, C., Simon, L., Khobaib, M., and Donley, M., “Characterization of Pitting Corrosion in Bare and Sol-Gel Coated Aluminum 2024-T3 Alloy,” Surface and Coatings Technology, Vol. 140, pp.29-34, 2001.
[90] Özcan, M., Dehri, I., and Erbil, M., “EIS Study of the Effect of High Levels of SO2 on the Corrosion of Polyester-Coated Galvanised Steel at Different Relative Humidities,” Progress in Organic Coatings, Vol. 44, pp.279-285, 2002.
[91] Conde, A., Durán, A., and Damborenea, J. J., “Polymeric Sol-Gel Coatings as Protective Layers of Aluminium Alloys,” Progress in Organic Coatings,Vol. 46, pp.288-296, 2003.
[92] Villegas, M. A., “Chemical and Microstructural Characterization of Sol-Gel Coatings in the ZrO2-SiO2 System,” Thin Solid Films, Vol. 382, pp.124-132, 2001.
[93] Yang, X. F., Li, J., Croll, S. G., Tallman, D. E., and Bierwagen, G. P., “Degradation of Low Gloss Polyurethane Aircraft Coatings under UV and Prohesion Alternating Exposures,” Polymer Degradation and Stability, Vol. 80, pp.51-58, 2003.
[94] Zheludkevich, M. L., Serra, R., Grundmeier, G., Yang, L. H., and Ferreira, M. G. S., “Barrier Properties of Polyurethane Coil Coatings Treated by Microwave Plasma Polymerization,” Surface & Coatings Technology, Vol. 200, pp.4040- 4049, 2006.
[95] Zand, B. N. and Mahdavian, M., “Corrosion and Adhesion Study of Polyurethane Coating on Silane Pretreated Aluminum,” Surface & Coatings Technology, Vol. 203, pp.1677-1681, 2009.
[96] Amirudin, A. and Thierry, D., “Application of Electrochemical Impedance Spectroscopy to Study the Degradation of Polymer-Coated Metals,” Progress in Organic Coatings, Vol. 26, pp.1-28, 1995.
[97] 陳國寧,“利用有機-無機混成法製備金屬防蝕薄膜之研究”,國立中央大學碩士論文,桃園,第35-41頁,2005。
[98] 蔡志偉,“阻燃層之奈米複合膠料製備與應用研究”,國防大學中正理工學院碩士論文,桃園,第64-67頁,2007。
[99] Metroke, T. L. and Apblett, A., “Effect of Solvent Dilution on Corrosion Protective Properties of Ormosil Coatings on 2024-T3 Aluminum Alloy,” Progress in Organic Coatings, Vol. 51, pp.36-46, 2004.
[100] Liu, J. G., Gong, G. P., and Yan, C. W., “EIS Study of Corrosion Behaviour of Organic Coating/Dacromet Composite Systems,” Electrochimica Acta, Vol. 50, pp.3320-3332, 2005.
[101] Zand, B. N. and Mahdavian, M., “Corrosion and Adhesion Study of Polyurethane Coating on Silane Pretreated Aluminum,” Surface & Coatings Technology, Vol. 203, pp.1677-1681, 2009.
[102] Haska, B. S., Bayramli, E., Pekel, F., and Ozkar, S., “Mechanical Properties of HTPB-IPDI-Based Elastomers,” Journal of Applied Polymer Science, Vol. 24, pp.2347-2354, 1998.
[103] Harusuke, T. and Iwama, A., “Pot Life Problem and its Measure with a Reduced Smoke Propellant Production,” Propellants, Explosives, Pyrotcchnics, Vol. 16, pp.105-109, 1991.
[104] Kishore, K. and Rajalingam, P., “Polymer-Filler Interactions in Hydroxy- Terminated Polybutadiene-Ammonium Perchlorate System in the Presence of a Bonding Agent,” Journal of Applied Polymer Science, Vol. 37, pp.2845-2853, 1989.
[105] Luo, Y. L., Li, Y. L., and Li, Z. Q., “Investigation into the Vapor Sensing Behavior and Mechanism of a Reactive Hydroxyl-Terminated Polybutadiene Liquid Rubber/Carbon Black Conductive Film,” Smart Materials and Structures, Vol. 15, pp.1979-1985, 2006.
[106] Sarkar, S. and Adhikari, B., “Synthesis and Characterization of Lignin-HTPB Copolyurethane, ” European Polymer Journal, Vol. 37, pp.1391-1401, 2001.
[107] Garrett, T. J., Xu, R., Cho, J., and Runt, J., “Phase Separation of Diamine Chain-Extended Poly(Urethane) Copolymers: FTIR Spectroscopy,” Polymer, Vol. 44, pp.2711-2719, 2003.
[108] Liu, H. and Zheng, S., “Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane,” Macromolecular Rapid Communications, Vol. 26, pp.196-200, 2005.
[109] Oaten, M. and Choudhury, R. N., “Silsesquioxane-Urethane Hybrid for Thin Film Applications,” Macromolecules, Vol. 38, pp.6392-6401, 2005.
[110] Zheng, S., Zou, Q., and Wu, L., “Preparation and Characterization of Polyurethane Hybrid from Reactive Polyhedral Oligomeric Silsesquioxane, ” Macromolecular Materials Engineering, Vol. 291, pp.895-901, 2006.
[111] Almeida, R. M. and Pantano, C. G., “Structural Investigation of Silica Gel Films by Infrared Spectroscopy,” Journal of Applied Physics, Vol. 68, pp.4225-4232, 1990.
[112] Babou, F., Coudurier, G., and Vedrine, J. C., “Acidic Properties of Sulfated Zirconia: An Infrared Spectroscopic Study,” Journal of Catalysis, Vol. 152, pp.341-349, 1995.
[113] Kanade, K. G., Baeg, J. O., Apte, S. K., Prakash, T. L., and Kale, B. B., “Synthesis and Characterization of Nanocrystallined Zirconia by Hydrothermal Method,” Materials Research Bulletin, Vol. 43, pp.723-729, 2008.
[114] Friedman, L. H., “Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastics,” Journal of Polymer Science: Part C, Vol. 6, pp.183-195, 1965.
[115] Chen, G., Zhou, S., Gu, G., and Wu, L., “Acrylic-Based Polyurethane/Silica Hybrids Prepared by Acid-Catalyzed Sol-Gel Process: Structure and Mechanical Properties,” Macromolecular Chemistry and Physicals, Vol. 206, pp.885-892, 2005.
[116] Widmaier, J. M. and Bonilla, G., “In Situ Synthesis of Optically Transparent Interpenetrating Organic/Inorganic Networks,” Polymers for Advanced Techno- Logies, Vol. 17, pp.634-640, 2006.
[117] Cho, J. W. and Lee, S. H., “Influence of Silica on Shape Memory Effect and Mechanical Properties of Polyurethane-Silica Hybrids,” European Polymer Journal, Vol. 40, pp.1343-1348, 2004
[118] Zhu, Y. and Sun, D. X., “Preparation of Silicon Dioxide/Polyurethane Nanocomposites by a Sol-Gel Process,” Journal of Applied Polymer Science, Vol. 92, pp.2013-2016, 2004.
[119] Lai, S. M., Wang, C. K., and Shen, H. F.,“Properties and Preparation of Thermoplastic Polyurethane/Silica Hybrid Using Sol-Gel Process,” Journal of Applied Polymer Science, Vol. 97, pp.1316-1325, 2005.
[120] Lai, S. M. and Liu, S. D., “Properties and Preparation of Thermoplastic Polyurethane/Silica Hybrids Using a Modified Sol-Gel Process,” Polymer Engineering and Science, DOI 10.1002/pen.20669, pp.77-86, 2007.
[121] Chen, Y., Zhou, S., Yang, H., Gu, G., and Wu, L., “Preparation and Characterization of Nanocomposite Polyurethane,” Journal of Colloid and Interface Science, Vol. 279, pp.370-378, 2004.
[122] Gupta, T. and Adhikari, B., “Thermal Degradation and Stability of HTPB-Based Polyurethane and Polyurethaneureas,” Thermochimica Acta, Vol. 402, pp.169-181, 2003.
[123] Pu, K.Y., Zhang, B., Ma, Z., Wang, P., Qi, X. Y., Chen, R. F., Wang, L.H., Fan, Q. L., and Huang, W., “Synthesis, Morphology and Photophysics of Novel Hybrid Organic-Inorganic Polyhedral Oligomeric Silsesquioxane- Tethered Poly(Fluorenyleneethynylene)s,” Polymer, Vol. 47, pp.1970-1978, 2006.
[124] Hsiao, B. S., White, H., Rafailovich, M., Mather, P. T., Jeon, H. G., Phillips, S., and Lichtenhan, J. D., “Nanoscale Reinforcement of Polyhedral Oligomeric Silsesquioxane (POSS) in Polyurethane Elastomer,” Polymer International, Vol. 49, pp.437-440, 2000.
[125] Devaux, E., Rochery, M., and Bourbigot, S., “Polyurethane/Clay and Polyurethane /POSS Nanocomposites as Flame Retarded Coating for Polyester and Cotton Fabrics,” Fire and Materials, Vol. 26, pp.149-154, 2002.
[126] Liu, H. and Zheng, S., “Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane,” Macromolecular Rapid Communications, Vol. 26, pp. 196-200, 2005.
[127] Turri, S. and Levi, M., “Wettability of Polyhedral Oligomeric Silsesquioxane Nanostructured Polymer Surfaces,” Macromolecular Rapid Communication, Vol. 26, pp.1233-1236, 2005.
[128] Liu, Y. H., Ni, Y., and Zheng, S., “Polyurethane Networks Modified with Octa(Propylglycidyl Ether) Polyhedral Oligomeric Silsesquioxane,” Macro- molecular Chemistry and Physics, Vol. 207, pp.1842-1851, 2006.
[129] Fu, B. X., Hsiao, B. S., Pagola, S., Stephens, P., White, H., Rafailovich, M., Sokolov, J., Mather, P. T., Jeonh, G., Phillips, S., Lichtenhan, J., and Schwab, J., “Nanoscale Reinforcement of Polyhedral Oligomeric Silsesquioxanes (POSS) in Polyurethane Elastomer,” Polymer International, Vol. 49, pp.4437-440, 2000.
[130] Bhunia, H. P., Jana, R. N., Basak, A., Lenka, S., and Nando, B. G., “Syntheisis of Polyurethane from Cashew Nut Shell Liquid (CNSL), a Renewable Resourse,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 36, pp.391-400, 1998.
[131] Len, C. M., Chang, T. Y., and Wei, K. H., “Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-Diamine,” Macromolecular, Vol. 33, pp.9122-9127, 2003.
[132] Wang, C. S. and Yang, W. R., “Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Appli- cations,” Chemistry of Materials, Vol. 15, pp.3721-3727, 2003.
[133] Pietsch, S. and Kaiser, W. D., “Corrosion Process below Organic Coatings,” Macromolecular Symposium, Vol. 187, pp.129-135, 2002.
[134] Viazzi, C., Bonino, J. P., and Ansart, F., “Synthesis by Sol-Gel Route and Characterization of Yttria Stabilized Zirconia Coatings for Thermal Barrier Applications,” Surface & Coatings Technology, Vol. 201, pp.3889-3893, 2006.
[135] Tartaja, P. and Jonghe, L. C., “Preparation of Nanospherical Amorphous Zircon Powders by a Microemulsion-Mediated Process,” Journal of Materials Chemical, Vol. 10, pp.2786-2790, 2000.
[136] Zhou, S. and Wu, L., “Phase Separation and Properties of UV-Curable Poly- urethane/Zirconia Nanocomposite Coatings,” Macromolecular Chemistry and Physicals, Vol. 209, pp.1170-1181, 2008.
[137] Wu, K. H., Li, M. C., Chang, T. C., and Yang, C. C., “Characterization and Corrosion Resistance of Organically Modified Silicate/MO2 (M=Zr, Ti, or Ce) Hybrid Coatings on a 6061-T6 Aluminum Alloy,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 44, pp.335-342, 2006.
[138] Zheludkevich, M. L., Serra, R., Montemor, M. F., and Yasakau, K. A., “Nano- Structured Sol-Gel Coatings Doped with Cerium Nitrate as Pretreatments for AA2024-T3 Corrosion Protection Performance,” Electrochimica Acta, Vol. 51, pp.208-217, 2005.
[139] Yang, X. F. , Tallman, D. E., Gelling, V. J., Bierwagen, G. P., Kasten, L. S., and Berg, J., “Use of a Sol-Gel Conversion Coating for Aluminum Corrosion Protection,” Surface and Coatings Technology, Vol. 140, pp.44-50, 2001.
[140] Wu, K. H., Chao, C. M., Yeh, T. F., and Chang,T. C., “Thermal Stability and Corrosion Resistance of Polysiloxane Coatings on 2024-T3 and 6061-T6 Aluminum Alloy,” Surface & Coatings Technology, Vol. 201, pp.5782-5788, 2007.
[141] Voevodin, N. N., Grebasch, N. T., Soto, W. S., Kasten, L. S., Grant, J. T., Arnold, F. E., and Donley, M. S., “An Organically Modified Zirconate Film as a Corrosion-Resistant Treatment for Aluminum 2024-T3,” Progress in Organic Coatings, Vol. 41, pp.287-293, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top