(3.236.231.61) 您好!臺灣時間:2021/05/11 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝侑錚
研究生(外文):Yu-Cheng Hsieh
論文名稱:虛擬環境下因物體移動而產生的氣旋聲音模擬
論文名稱(外文):Virtual Reality Simulation of Vortex Sound Caused by Moving Object in the Air
指導教授:劉興民
指導教授(外文):Damon Shing-Min Liu
口試委員:劉興民翁世光姚宏宗林惠勇
口試委員(外文):Damon Shing-Min LiuShyh-Kuang UengH. T. YauHuei-Yung Lin
口試日期:100/7/28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:50
中文關鍵詞:聲音合成聲音繪製計算式流體模擬物理模擬
外文關鍵詞:sound synthesisaudio renderingcomputational fluid dynamicsphysics simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目標在於虛擬實境下模擬虛擬物體快速移動所產生氣流的聲音.在虛擬實境的應用中,影像總是伴隨著聲音出現在應用中,影像可以經由電腦圖學的技術快速的產生,然而傳統中聲音卻必須經由錄製現實中的聲音或音樂家專門製作來產生,因此我們希望能在虛擬環境中根據影像的資訊,自動的產生接近真實的聲音.在早先的研究中,大多著重於碰撞的聲音.碰撞的聲音在生活中最為明顯,但物體移動時所空氣產生的聲音也是生活中不可或缺的,我們相信若能模擬出物體移動時所產生的聲音,能增進虛擬實境的真實度,於是我們提出物體移動產生聲音的模擬.
  在實驗中,我們首先使用物理引擎模擬虛擬物體在世界中移動的軌跡與速度資訊,並利用流體模擬引擎模擬物體移動時周遭空氣的運動狀態.在流體模擬中,我們限制模擬周遭環境的範圍(mesh)並將周遭環境切割成小方塊(voxel),根據移動資訊設定邊界流體速度,模擬出物體移動時周遭空氣的運動狀態,並且我們假設每個小方塊都為一個獨立的聲源,聲源頻率由小方塊流速與物體在渦度平面的寬度決定.在每個時間點,將聲源疊加會產生一段諧波,並與之前的聲音做接合處理,便得到物體移動所產生的聲音.最後我們將聲音資訊傳給3D空間音效引擎,實作空間音效.

The research aims to develop a sound synthesis system of moving object in virtual reality (VR) environment. In most VR applications, visual effect always accompanies with audio effect. Visual image can be automatically generated using computer graphics techniques, but audio data is always produced by recording real world sound or by a musician. Here we seek to automate sound generation according to information embedded in visual image. Most previous researches focus on contact sound because it is the most obvious sound in real life. But aerodynamics sound generated by moving object is ubiquitous. We believe that if we can simulate aerodynamics sound which is caused by moving object, it can largely enhance VR realism.
At beginning of our research, we use a physical engine to simulate an object motion and send its velocity information to Computational Fluid Dynamics (CFD) component. We simulate air velocity field surrounding the object in such CFD component. We divide mesh to many cells in this stage and assume that each cell has a sound source whose frequency is determined by the cell velocity and the object width in the cell’s vorticity surface. All sound sources will be superposed to generate a clip of harmonic wave which is corresponding to the object motion sound. Finally we use a 3D spatial sound engine to produce spatial sound effect.
Our system achieves automatic sound generation of moving object and can produce resulting sound which is consistent with object motion and object shape. We let sound generation and sound spatialization component separated, which allows for selecting different sound spatialization method.

CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION AND OBJECTIVES 2
1.2 VORTEX SOUND ASSUMPTION 3
1.3 SIGNIFICANCE OF THE WORK 4
CHAPTER 2 RELATED WORK 6
2.1 CONTACT SOUND SYNTHESIS 6
2.2 AERODYNAMICS SOUND SYNTHESIS 9
2.3 LARGE-SCALE SOUND SOURCE SYNTHESIS 11
CHAPTER 3 ARCHITECTURE AND APPROACH 14
3.1 SYSTEM OVERVIEW 14
3.2 PHYSICS SIMULATION COMPONENT 15
3.3 FLUID SIMULATION COMPONENT 18
3.4 SOUND GENERATION COMPONENT 25
3.5 SOUND SPATIALIZATION COMPONENT 36
CHAPTER 4 EXPERIMENTAL RESULTS 37
4.1 SYSTEM CONFIGURATION 37
4.2 EXPERIMENTAL RESULTS 38
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 46
REFERENCES 48

[1]Thomas Funkhouser, Ingrid Carlbom, Gary Elko, Gopal Pingali, Mohan Sondhi, and Jim West. A Beam Tracing Approach to Acoustic Modeling for Interactive Virtual Environments. ACM SIGGRAPH, pages 21-32, 1998.
[2]Micah T. Taylor, Anish Chandak, Lakulish Antani, and Dinesh Manocha. RESound: Interactive Sound Rendering for Dynamic. ACM Multimedia, pages 271-280, 2009.
[3]James F. O'Brien, Perry R. Cook, and Georg Essl. Synthesizing Sounds from Physically Based Motion. ACM SIGGRAPH, pages 529-536, 2001.
[4]James F. O’Brien, Chen Shen, and Christine M. Gatchalian. Synthesizing Sounds from Rigid-Body Simulations. ACM SIGGRAPH, pages 175-181, 2002.
[5]Jeffrey N. Chadwick, Steven S. An, and Doug L. James. Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells. ACM SIGGRAPH, pages 1-10, 2009.
[6]Cécile Picard, Nicolas Tsingos, and François Faure. Audio Texture Synthesis for Complex Contact Interactions. VRIPHYS, pages 83-88, 2008.
[7]Zhimin Ren, Hengchin Yeh, and Ming C. Lin. Synthesizing Contact Sounds Between Textured Models. IEEE Virtual Reality, pages 139-146, 2010.
[8]Howe M. S. The Theory of Vortex Sound. Cambridge University Press, 2003.
[9]Tam, Christopher K. W. Computational Aeroacoustics: Issues and Methods. American Institute of Aeronautics and Astronuatics Journal, pages 1788-1796, 1995.

[10]Lele, Sanjiva K. Computational Aeroacoustics: A Review. American Institute of Aeronautics and Astronautics Paper, page 18, 1997.
[11]Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Real-Time Rendering of Aerodynamic Sound using Sound Textures based on Computational Fluid Dynamics. ACM SIGGRAPH, pages 732-740, 2003.
[12]Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Synthesizing Sound from Turbulent Field using Sound Textures for Interactive Fluid Simulation. EUROGRAPHICS, pages 539-546, 2004.
[13]David Grelaud, Nicolas Bonneel, Michael Wimmer, Manuel Asselot, and George Drettakis. Efficient and Practical Audio-Visual Rendering for Games using Crossmodal Perception. ACM SIGGRAPH, pages 177-182, 2009.
[14]Nikunj Raghuvanshi and Ming C. Lin. Interactive Sound Synthesis for Large Scale Environments. ACM SIGGRAPH, pages 101-108, 2006.
[15]Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle Viaud-Delmon, and Doug James. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM SIGGRAPH, pages 1-9, 2008.
[16]Nicolas Tsingos, Emmanuel Gallo, and, George Drettakis. Perceptual Audio Rendering of Complex Virtual Environments. ACM SIGGRAPH, pages 249-258, 2004.
[17]Thomas Moeck, Nicolas Bonneel, Nicolas Tsingos, George Drettakis, Isabelle Viaud-Deimon, and David Alloza. Progressive Perceptual Audio Rendering of Complex Scenes. ACM SIGGRAPH, pages 189-196, 2007.
[18]Nvidia PhysX http://www.nvidia.com.tw/object/physx_new_tw.html
[19]Havok http://www.havok.com
[20]Bullet Physics http://bulletphysics.org/wordpress/
[21]Open Dynamics Engine http://www.ode.org/
[22]Newton Dynamics Engine http://newtondynamics.com/forum/newton.php
[23]ANSYS http://www.ansys.com/
[24]CD-adapco http://www.cd-adapco.com/
[25]FLOW-3d http://www.flow3d.com/
[26]NUMECA http://www.numeca.com/
[27]OpenFOAM http://www.openfoam.com/
[28]XAudio http://www.xaudio.com/
[29]OpenAL http://connect.creativelabs.com/openal/default.aspx

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔