跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊勝傑
研究生(外文):Chuang, ShengChieh
論文名稱:TBLB技術之合成流程
論文名稱(外文):Design Synthesis for TBLB Technology
指導教授:陳添福陳添福引用關係
指導教授(外文):Chen, TienFu
口試委員:朱元華賴伯承林泰吉
口試委員(外文):Chu, YuanHuaLai, PaChengLin, TaiJi
口試日期:2011-09-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:63
中文關鍵詞:合成
外文關鍵詞:synthesis flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
隨著能源越來越缺乏,低功耗的產品已經成為一種趨勢,而降低系統電壓是減少電量消耗最直接且最有的方法之一,但是在低電的環境下,會使得半導體電路的延遲變得更糟,因此如何處於低電壓下達到省電卻又不損失太多效能是一大挑戰。而TBLB 是個可以供給多個電壓的技術,可以達到低功耗又能夠提升電路效能的電路技術,但要使用TBLB在電路上有些限制,因此本篇論文提出了為TBLB設計合成流程,特別是多重供給電壓的合成流程,傳統合成方法只能使用一種電壓模式去合成分析時間,因此對於不同電壓下的時間限制幾乎無法收斂,本篇論文提出了多重供給電壓下合成的方法,可以符合不同電壓下的時間限制,並且使電路達到最佳的功率效能。
With the increasing lack of energy resource, low power has become a tendency. Lowering supply voltage is the most straightforward and effective approach to reduce power consumption. However, under low voltage environment can make the performance of circuits worse. Therefore, how to achieve a target of low power consumption but still keeps the performance under low voltage. The TBLB is a technique with multiple supply voltages and can achieve the low power consumption but also enhance the circuit performance. But using TBLB technique has some restrictions. Therefore, this thesis provides the synthesis flow for TBLB, especially focus on the multiple supply voltage synthesis flow. Traditional synthesis flow can synthesis and analysis just with one power domain. Therefore, traditional synthesis flow is hard to meet the timing constraints of different power domain. This thesis provides the multiple supply voltage synthesis flow and can meet timing constraints of different power domain, and make the circuit to achieve the best power performance.
中文摘要 i
Abstract ii
Chapter 1 Introduction ································· 1
1.1 Motivation and Introduction .................................................................. 1
1.2 Main Contribution .................................................................................. 7
1.3 Thesis Organization ............................................................................... 8
Chapter 2 Background and Related Work · 9
2.1 Overview ................................................................................................ 9
2.2 Related work .......................................................................................... 9
Chapter 3 TBLB design flow ··················· 17
3.1 TBLB overview ................................................................................... 17
3.2 TBLB Synthesis flow ........................................................................... 18
3.2.1 Common Power Format for Multiple Supply Voltage Synthesis ......... 19
3.2.2 Multiple Voltage Synthesis Flow ......................................................... 22
3.3 Case Study ........................................................................................... 28
Chapter 4 Experimental Results ·············· 47
4.1 Experiment Setup ................................................................................. 47
4.2 Performance Evaluation ....................................................................... 48
4.3 Cost Estimation .................................................................................... 49
Chapter 5 Conclusion ······························ 51
[1] M. Fojtik, D. Kim, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo, D. Sylvester, and D. Blaauw, “Millimeter-Scale Nearly Perpetual Sensor System with Stacked Battery and Solar Cells,” 2010 IEEE International SolidState Circuits Conference, 288–289.
[2] B. H. Calhoun and D. Brooks, “Can Subthreshold and Near-Threshold Circuits Go Mainstream?,” IEEE Micro 30, 80–85 (2010).
[3] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE Journal of Solid-State Circuits 35, 1571–1580 (2000).
[4] S. Das, Sanjay Pant, D. Roberts, Seokwoo Lee, D. Blaauw, T. Austin, T. Mudge, and K. Flautner, “A self-tuning DVS processor using delay-error detection and correction,” in 2005 Symposium on VLSI Circuits , pp. 258–261.
[5] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and practical limits of dynamic voltage scaling,” 2004, 868, ACM Press.
[6] W. Kim, M. S. Gupta, G.-yeon Wei, and D. Brooks, “System level analysis of fast, per-core DVFS using on-chip switching regulators,” IN INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (2008).
[7] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw, T. Austin, et al., “Razor: a low-power pipeline based on circuit-level timing speculation,” in 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. pp. 7–18.
[8] D. Blaauw, S. Kalaiselvan, K. Lai, Wei-Hsiang Ma, S. Pant, C. Tokunaga, S. Das, and D. Bull, “Razor II: In Situ Error Detection and Correction for PVT and SER Tolerance,” in Solid-State Circuits Conference, 2008. IEEE International, pp.
53
400–622.
[9] K. A. Bowman, J. W. Tschanz, Nam Sung Kim, J. C. Lee, C. B. Wilkerson, S.-L. . Lu, T. Karnik, and V. K. De, “Energy-Efficient and Metastability-Immune Timing-Error Detection and Instruction-Replay-Based Recovery Circuits for Dynamic-Variation Tolerance,” in Solid-State Circuits Conference, 2008. IEEE International, pp. 402–623.
[10] A. Tiwari, S. R. Sarangi, and J. Torrellas, “ReCycle: Pipeline Adaptation to Tolerate ProcessVariation,” 2007, 323, ACM Press.
[11] X. Liang, G.-Y. Wei, and D. Brooks, “ReVIVaL: A Variation-Tolerant Architecture Using Voltage Interpolation and Variable Latency,” June 2008, 191–202, IEEE.
[12] J. Semiao, J. J. Rodriguez-Andina, F. Vargas, M. B. Santos, I. C. Teixeira, and J. P. Teixeira, “Improving the Tolerance of Pipeline Based Circuits to Power Supply or Temperature Variations,” in 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, 2007.
[13] J. Tschanz, Nam Sung Kim, S. Dighe, J. Howard, G. Ruhl, S. Vanga, S. Narendra, Y. Hoskote, H. Wilson, et al., “Adaptive Frequency and Biasing Techniques for Tolerance to Dynamic Temperature-Voltage Variations and Aging,” in Solid-State Circuits Conference, 2007. IEEE International, pp. 292–604.
[14] M. S. Gupta, J. A. Rivers, P. Bose, Gu-Yeon Wei, and D. Brooks, “Tribeca: Design for PVT variations with local recovery and fine-grained adaptation,” in 42nd Annual IEEE/ACM International Symposium on Microarchitecture, 2009. 435–446.
[15] “Si2 Common Power Format Specification (CPF),” http://www.si2.org/?page=811.
[16] S. Ghosh, P. Batra, Keejong Kim, and K. Roy, “Process-Tolerant Low-Power Adaptive Pipeline under Scaled-Vdd,” in IEEE Custom Integrated Circuits
54
Conference, 2007., pp. 733–736.
[17] D. Mohapatra, G. Karakonstantis, and K. Roy, “Low-power process-variation tolerant arithmetic units using input-based elastic clocking,” 2007, 74–79, ACM Press.
[18] K. A. Bowman, A. R. Alameldeen, S. T. Srinivasan, and C. B. Wilkerson, “Impact of Die-to-Die and Within-Die Parameter Variations on the Clock Frequency and Throughput of Multi-Core Processors,” IEEE Transactions on Very Large Scale Integration Systems 17, 1679–1690 (2009).
[19] J. Tschanz, K. Bowman, and V. De, “Variation-tolerant circuits: circuit solutions and techniques,” in Design Automation Conference, 2005. Proceedings. 42nd, pp. 762–773.
[20] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining: a tutorial and research survey,” IEEE Transactions on Very Large Scale Integration Systems 6, 464–474 (1998).
[21] D. C. Wong, G. De Micheli, and M. J. Flynn, “Designing high-performance digital circuits using wave pipelining: algorithms and practical experiences,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 12, 25–46 (1993).
[22] “Cadence Encounter RTL Compiler,” http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top