跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭俊志
研究生(外文):Chun Chih Kuo
論文名稱:研究複合二氧化鉿/三氧化二鋁氧化層全透式電阻記憶體之轉態特性
論文名稱(外文):Study of Transparent Resistive Random Access Memory with Laminated HfO2/Al2O3 dielectrics
指導教授:劉國辰
指導教授(外文):K. C. Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:98
論文頁數:71
中文關鍵詞:電阻式記憶體氧化鉿/氧化鋁複合式
外文關鍵詞:RRAMHfO2/Al2O3multi layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
科技日新月異,且隨著可攜式元件的蓬勃發展,例如手機及數位相機,非揮發性記憶體元件在半導體產業的需求也日益增加。因此,許多研究機構紛紛投入新世代揮發性記憶體元件的開發,而電阻式記憶體具有耗能低、高操作速度、可微縮性、耐久性佳與非揮發性等優點,因此它很有希望成為下一個世代的非揮發性記憶體。這篇論文中,我們利用此結構:ITO/HfO2/Al2O3/…/ITO/Glass來製作全透式電阻式記憶體元件。首先我們先探討不同限流與截止電壓對電阻式記憶體的關係。並且沉積多層氧化層的層數變化做探討。發現單層的緻密性很好,沒有特性,原因可能是因為形成電壓造成元件傷害;而多層的氧化層,可以達到2000次,且持久力可達30000秒。最後,探討可能的電阻轉換機制。
Due to the popularity of portable equipment, such as mobile and camera, the requirements of non-volatile memory (NVM)increase significantly in the semiconductor industry. Therefore, researchers are eagerly finding one kind of next-generation NVM possessing. One of the promising candidates of next-generation NVMs is the resistive random access memory (RRAM) owing to its low operation voltage and power, high operation speed, high scalability, good endurance, etc. In this thesis, we used the structure of ITO/HfO2/Al2O3/…/ITO/Glass to fabricate the transparent resistance random access memory (TRRAM). First, we discuss the influence of different compliance current and Vstop to resistive memory. Afterward, we discuss the oxide layer with different proportion cycles. The single-oxide layer exhibited no hysteresis, it is probably due to stoichiometric of HfO2 film by XPS result. Further, we used the advantages of multi-oxide layer in RRAM. This structure has very good resistive switching characteristics, which show endurance of more than 2000 cycles, and data retention of over ten years. Finally, we will investigate the experimental results and discuss switching mechanism of devices.
Contents誌 謝................................................IV 中文摘要....................................................V Abstract..................................................VI Contents.................................................VII Figure Captions............................................X Table Captions...........................................XII Chapter 1 Introduction...................................1 1.1 Introduction to Resistive Random Access Memory.........1 1.2 Background.............................................2 1.2.1 Materials groups.....................................2 1.2.2 Operation Method.....................................3 1.3 Conduction Mechanisms of RRAM..........................3 1.3.1 Ohmic Conduction.....................................4 1.3.2 Schottky Emission....................................4 1.3.3 Poole–Frenkel emission..............................4 1.3.4 Tunnel or Field Emission.............................4 1.3.5 Space Charge Limited Current (SCLC)..................4 Chapter 2 Experiment Details............................11 2.1 Materials.............................................11 2.2 Sample Preparation....................................11 2.2.1 Deposition of HfO2/Al2O3 Insulating Layer...........12 2.2.2 Deposition of ITO Top Electrode.....................13 2.3 Physical Analyses Instruments.........................13 2.3.1 X-ray Diffraction (XRD).............................13 2.3.2 Scanning Electron Microscopy (SEM)..................13 2.3.3 Transmission Electron Microscopy (TEM)..............13 2.3.4 Focus ion beam (FIB)................................14 2.3.5 Atomic layer deposition (ALD) system................14 2.3.6 Sputter system......................................15 2.4 Electrical Analyses Measurements......................16 2.4.1 Current-Voltage Measurement.........................16 2.4.2 Endurance test......................................16 2.4.3 Retention time test.................................16 2.4.4 Read disturb test...................................16 Chapter 3 Result and Discussion.........................19 3.1 The physical analysis of Multi-Oxide (9 cycles、19 cycles and 38 cycles) layer deposited on ITO/Glass devices...................................................19 3.2 The electrical characteristics of Multi-Oxide layer...20 3.3 Resistive switching characteristics of ITO/HfO2+Al2O3 (9、19 and 38 cycles)/ITO/Glass structure.................21 3.3.1 Electrical properties...............................21 3.3.2 Retention property..................................23 3.4 Conduction mechanism of multi-oxide layer.............24 3.4.1 Electrical Analyses SCLC plot of I-V characteristics...........................................24 3.5 Discussion on different cycle of multi-oxide layer effect....................................................26 Chapter 4 Conclusion....................................52 Chapter 5 Future work...................................53 5.1 Resistive Switching Mechanisms........................53 5.2 Possible Ways to Improve the Device...................53 Reference.................................................54 Figure Captions Fig.1-1 Unipolar and bipolar switching schemes.............8 Fig. 1-2 A schematic energy band gap of Schottky emission..9 Fig. 1-3 A schematic energy band diagram describing PF emission...................................................9 Fig. 1-4 A schematic energy band gap of trap-assisted tunneling emission.........................................9 Fig. 1-5 A schematic energy band gap describing Space Charge Limited Current....................................10 Fig.2-1 Shadow Mask photograph............................17 Fig. 2-2 The fabrication flow of the MIM diagram..........18 Fig. 3-1 Optical transmission spectrum of 9、19 and 38 cycles devices............................................29 Fig. 3-2 The cross section micrographs and HR-TEM lattice image of ITO/Multi-Oxide Layer/ITO. (a) 9 cycles (b) 19 cycles (c) 38 cycles devices..............................31 Fig. 3-3 shows the surface AFM image of all three different multi-oxide deposited on the ITO/Glass (a)9 cycles(b)19 cycles(c)38 cycles devices................................32 Fig. 3-5 XPS intensity of single oxide layer ITO/ HfO2 (26nm)/ITO structure......................................33 Fig. 3-5 XPS atomic concentration of single oxide layer ITO/HfO2 (26nm)/ITO structure.............................34 Fig. 3-6 Forming process of ITO/HfO2/ITO/Glass and ITO/HfO2+Al2O3+…(9、19、38 cycles)/ITO/Glass device......34 Fig. 3-7 I-V curve of Signal-Oxide layer (HfO2) sample and Multi-Oxide layer (HfO2/Al2O3) sample.....................35 Fig. 3-8 I-V curve of the ITO/HfO2+Al2O3+… (19 cycles)/ITO device by various current compliances. A, B and C denotes various IRESET, MAX.......................................35 Fig. 3-9 The relation between current compliance and on/off ratio at 0.24V............................................36 Fig. 3-10 The characteristic of RHIGH by controlling VSTOP.....................................................36 Fig. 3-11 The relation between VSTOP and on/off ratio at 0.24V.....................................................37 Fig. 3-13 Resistance of HRS and LRS of (a) 9 cycles (b) 19 cycles (c) 38 cycles structure by 0.24 V..................40 Fig. 3-14 The retention properties of (a) 9 cycles (b) 19 cycles (c) 38 cycles structure at 25℃. The result predicts 10 years lifetime of stored...............................42 Fig. 3-15 The read disturb of RLOW and RHIGH of (a) 9 cycles (b) 19 cycles (c) 38 cycles structure by constant voltage stress of 0.5 V...................................43 Fig. 3-16 Fitting curves of both LRS and HRS currents of the multi-layer (a)9 cycles (b)19 cycles (c)38 cycles by SCLC......................................................45 Fig. 3-17 Top electrode area dependence of resistance in IRS、HRS and LRS..........................................45 Fig. 3-18 Temperature dependence of the resistance in HRS and LRS...................................................46 Fig.3-19 The Arrhenius plot in HRS........................47 Fig. 3-20 The compliance current of SET process effect with (a) 9 cycles (b)19 cycles (c)38 cycles....................48 Fig. 3-21 Vforming with RLRS and switching endurance of different conditions......................................49 Fig. 3-22 The constant current stress of ITO/multi-oxide layer/ITO/Glass device....................................50 Fig. 3-23 Distribution of SET Voltage and RESET Voltage in the sample (9 cycles、19 cycles and 38 cycles)............50 Fig. 3-24 The filament form situation of 9 and 38 cycle devices...................................................51 Table Captions Table 1-1 Compare with the Flash memory and next-generation NVMs.......................................................6 Table 1-2 RRAM is developed by many companies..............6 Table 1-3 Basic conduction mechanisms in insulator.........7 Table 3-1. Comparison with the different cycle of multi-oxide layer...............................................28
Reference:[1] Stanford R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures,” Phy. Rev. Lett. 1968 vol.21 [2] R. Waser and M. Aono. “Nanoionics-based resistive switching memories,” Nat. Mater. 6 (2007) 833. [3] J. J. Yang et al. “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nat. Nanotechnol. 3 (2008) 429. [4] S. Seo et al. “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett. 85 (2004) 5655. [5] B. J. Choi et al. “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys. 98 (2005) 033715. [6] A. Chen et al. Evidence of hot electrons generated from an AlN/GaN high electron mobility transistor, Appl. Phys. Lett. 92 (2008) 013503. [7] X. Wu et al. “Reproducible unipolar resistance switching in stoichiometric ZrO2 films,” Appl. Phys. Lett. 90 (2007) 183507. [8] M. Villafuerte et al. “Electric-pulse-induced reversible resistance in doped zinc oxide thin films,” Appl. Phys. Lett. 90 (2007) 052105. [9] S. Q. Liu et al. “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett. 76 (2000) 2749. [10] D. S. Shang et al.: J. Mater. Res. 23 (2008) 302. [11] A. Beck et al. “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett. 77 (2000) 139. [12] K. Szot et al.: Nat. Mater. 5 (2006) 312. [13] T. Sakamoto et al. “Electronic transport in Ta2O5 resistive switch,” Appl. Phys. Lett. 91 (2007) 092110. [14] K. Terabe et al.: Nature (London) 433 (2005) 47. [15] C. Schindler et al.: IEEE Trans. Nanotechnol. 5 (2006) 535. [16] I. G. Baek et al. “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses,” IEDM, 2004. [17] B. J. Choi et al. “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys, Vol. 98, 2005, p. 033715 [18] A. Chen et al. “Switching characteristics of Cu2O metal-insulator-metal resistive memory,” Appl. Phys. Lett, Vol. 91, 2007, p. 123517. [19] Musarrat Hasan et al. “Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures,” Appl. Phys. Lett. 92, 202102 (2008) [20] Chih-Tsung Tsai et al. “Low temperature improvement on silicon oxide grown by electron-gun evaporation for resistance memory applications,” Appl. Phys. Lett. 93, 052903 (2008) [21] J. W. Seo et al. “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching,” Appl. Phys. Lett. 93 (2008) 223505. [22] Lei Shi et al. “Bipolar Resistance Switching in Fully Transparent ZnO:Mg-Based Devices,” Appl. Phys. Express 2 (2009) 101602. [23]A. Sawa et al. “Correlation of molecular conformation with adhesion at AlOx/poly (ethylene terephthalate) interface studied by sum-frequency generation spectroscopy,” Appl. Phys. Lett. 85 (2004) 4373. [24]J.R. Contreras,H. “Resistive switching in metal–ferroelectric–metal junctions,” Appl. Phys. Lett. 83 (2003) 4595 [25]Chih-Yang Lin, Dai-Ying Lee, Tseung-Yuen Tseng. Surface & Coatings Technology 203 (2008) 628–631 [26] T. Sakamoto et al. “Electronic transport in Ta2O5 resistive switch,” Appl. Phys. Lett. 91 (2007) 092110. [27] K. Terabe et al.: Nature (London) 433 (2005) 47. [28] C. Schindler et al.: IEEE Trans. Nanotechnol. 5 (2006) 535. [29] K. Kinoshita, “Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide,” Appl. Phys. Lett. 89 (2006) 103509. [30] I.G. Baek,M.S. Lee, S. Seo,M.J. Lee, D.H. Seo,D.S. Suh, J.C. Park,H.S. Kim, I.K.Yoo,U.I. Chung, J.T. Moon, Int. Electron Devices Meet. Tech. Dig. (2004) 587. [31] Rainer Waser, “Electrochemical and Thermochemical Memories ,” IEDM 2008 [32] Y. B. Nian, et al. “Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides,” Phys. Rev.Lett. 98, 146403 (2007) [33] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: John Wiley & Sons, 1981, pp. 402-407. [34] R.E. Thurstans, et al. “The electroformed metal-insulator-metal structure: a comprehensive model,” J. Phys., D 35 (2002) 802. [35] R.D. Gould, M.G. Lopez, Thin Solid Films 433 (2003) 315. [36] R. Blessing, H. Pagnia, N. Stonik, “Electrical conductivity and dynamics of electroforming in Al---SiOx---Al thin film sandwich structures,” Thin Solid Films 85 (1981) 119. [37] C.Rohde, et al. “Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys Lett. 86, 262907 (2005) [38] X. CaO et al. “Effects of the compliance current on the resistive switching behavior of TiO2 thin films,” Appl. Phy. A 97, 883-887 (2009) [39] Kim et al. “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phy. Lett. 88,202102 (2006). [40] J.H. Hsu et al. Vac. Sci. Technol. B 21, 2599 (2003) [41] An Chen, Member, et al. “A Temperature-Accelerated Method to Evaluate Data Retention of Resistive Switching Nonvolatile Memory," IEEE, Vol. 29, No. 1, 2008, pp. 38-40. [42] Jang-Sik Lee, et al. “Data Retention Characteristics of Nitride-Based Charge Trap Memory Devices with High-k Dielectrics and High-Work-Function Metal Gates for Multi-Gigabit Flash Memory," Japanese Journal of Applied Physics, Vol. 45, No. 4B, 2006, pp. 3213-3216. [43] Jang-Sik LEE, et al. “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin Films by the Selectively Nucleated Lateral Crystallization Method,"Japanese Journal of Applied Physics, Vol. 40, No. 1, 2001, pp. 229-233. [44] H. B. Lv, et al. “Resistive Memory Switching of CuXO Films for a Nonvolatile Memory Application,"IEEE, Vol. 29, No. 4, 2008, pp. 309-311. [45] Agostino Pirovano, et al. “Reliability Study of Phase-Change Nonvolatile Memories,"IEEE, Vol. 4, No. 3, 2004, pp. 422-427. [46] R. Dong, Q. et al. “Retention behavior of the electric-pulse-induced reversible resistance change effect in Ag-La0.7Ca0.3MnO3-Pt sandwiches,"Applied Physics Letters, Vol. 86, 2005, p.172107. [47] R. Soni, C. et al. “A Novel Dual-Layered Electrolytic Resistance Memory with Enhanced Retention,"IEEE, 2008, pp. 764-766. [48]K. C. Kao, et al. “Electrical Transport in Solids,” (Pergamon, Oxford, U.K., 1981),” P. 150. [49]I. H. Inoue et al. “Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches Homogeneous/inhomogeneous transition of current distribution,” Phys. Rev. B 77 (2008) 035105 [50] Kyung Min Kim et al. “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films” Applied Physics Letters 90, 242906 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top