跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹宜竣
研究生(外文):Yi Chun Chan
論文名稱:利用氧化釓當做氧化層在全透式電阻式記憶體之研究
論文名稱(外文):Gadolinium oxide based transparent resistive random access memory study
指導教授:劉國辰
指導教授(外文):K. C. Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:98
論文頁數:93
中文關鍵詞:電阻式記憶體
外文關鍵詞:RRAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電阻式記憶體被廣泛的研究,基於它的低電壓操作、寫入抹除時間短、記憶時間長、非破壞性讀取、多狀態記憶、結構簡單及所需面積小等優點。在這篇論文裡,我們利用脈衝雷射沉積的技術沉積Gd2O3當作我們的resistive layer,加上使用透明電極”ITO”當作我們的上下電極,完成我們的全透式電阻式記憶體結構。然而根據一些文獻的記載,resistive layer 的結晶與否跟我們的操作電性有非常大的關係。本篇論文裡,我們改變了Gd2O3 沉積時的基底溫度,分別在常溫、200、300度下沉積,藉由SEM和XRD或TEM等材料分析去分析薄膜,並藉由半導體分析量測儀HP4156C測量我們元件的電性,包括單極操作和雙極操作,最後對原件的可靠度做量測,可達十年之久。由數據的結果可得知,沉積溫度在300度下元件雙極的耐久度可達到兩千次以上,與我們推測的結晶度有關係。但單極的電性尚未達到我們所需的目標,因此,接下來仍需對單極電性做深入的探討。由以上深入的研究之後,未來可應用在全透式的電子元件上將指日可待。
In recent years, resistive random access memory has been widely researched, based on its low operation voltage、short write/erase time、long storage time、nondestructive readout、multi-bit storage and simple structure will be as a candidate for next generation nonvolatile memory. In this thesis, we use pulsed laser deposition to deposit the gadolinium oxide as our resistive layer, combining with the transparent electrode “ITO” to carry out the full transparent resistive random access memory. However, according to some literature, whether the resistive layer is polycrystalline or not will influence our resistive switching properties. In this thesis, we varied the substrate temperature as RT, 200oC, 300oC during depositing Gd2O3 films, with material instrument such as SEM, XRD, and TEM, we could analyze the properties of thin films. At last, we use semiconductor I-V instrument to measure the resistive switching of our device. The electrical device properties of this three different deposition temperature, the effects of compliance currents, and the operation voltages are also analyzed. In addition, we also measure the reliability of our device, the result shows an excellent retention time. According to the data we see, the endurance of ITO/ Gd2O3 (300oC)/ITO demonstrates more than 2000 times, which is related to whether crystalline of film or not. However, the resistive switching properties of unipolar are not good enough. Hence, we should still investigate the resistive switching of unipolar. Based on the further research, it is expected that TRRAM can be as the next generation memory.
Content誌謝 iv 中文摘要 v Abstract vi Content vii Figure of Contents x Table of Contents xiii Chapter 1 Introduction 1 1.1 Memory Introduction 1 1.1.1 Volatile memory 1 1.1.2 Non Volatile memories 1 1.1.3 Resistance random access memory 2 1.1.4 Transparent resistance random access memory 3 1.1.5 Motivation 4 1.2 Potential of resistive random access memory 5 1.2.1 Programming voltage 5 1.2.2 Resistance ratio 5 1.2.3 Write/ Erase time 5 1.2.4 Device scaling 6 1.2.5 Endurance 6 1.2.6 Retention 6 1.3 Basic resistive switching current-voltage curves 6 1.4 Review the each effective parameter of resistive switching 7 1.4.1 Top and bottom electrodes 8 1.4.2 Resistive switching films 9 1.4.4 The surface Resistive switching thin film for some treatments 10 1.4.5 Embedded reactive metals 10 1.5 Forming process 11 1.5.1 The details of forming process 11 1.6 Resistive switching physical mechanism 13 1.6.1 Space charge limit conduction 13 1.6.2 Filament model 15 1.6.3 Oxygen migration 16 1.6.4 Schokkty barrier modulation 16 Chapter 2 Experimental details 24 2.1 The application of ITO 24 2.2 The application of binary metal oxide 24 2.3 Experiment procedure and equipment 24 2.4 The process equipments 26 2.4.1 DC sputter system 26 2.4.2 Pulse laser deposition system 26 2.5 Physical analysis equipments 27 2.5.1 X-ray diffraction 27 2.5.2 X-ray photoelectron spectroscopy 28 2.5.3 Atomic force microscopy 28 2.5.4 Scanning electron microscopy 28 2.5.5 Focus ion beam 29 2.5.6 Transmission electron microscopy 29 2.5.7 UV-Vis-near IR spectrometry 30 2.6 Electrical analysis 31 2.6.1 Current-voltage measurement 31 2.6.2 Data retention time measurement 31 2.6.3 Endurance measurement 31 Chapter 3 Results and Discussion 37 3.1 Specified some resistive switching parameters 37 3.1.1 Resistive switching parameters 37 3.1.2 Compliance current 37 3.2 Investigate morphology of Gd2O3 variation deposition temperature by pulse laser deposition 39 3.3 Resistive switching properties of the Gd2O3 at room temperature in ITO/ Gd2O3/ITO/Glass structures 41 3.3.1 The properties of unipolar resistive switching 41 3.3.2 The properties of bipolar resistive switching 42 3.3.3 Material analyze 42 3.3.4 Reliability test 43 3.4 Resistive switching properties of the Gd2O3 at 200oC in ITO/ Gd2O3/ITO/Glass structures 48 3.4.1 The properties of unipolar resistive switching 48 3.4.2 The properties of bipolar resistive switching 48 3.4.3 Material analyze 49 3.4.4 Reliability test 49 3.5 Resistive switching properties of the Gd2O3 at 300oC in ITO/ Gd2O3/ITO/Glass structures 53 3.5.1 The properties of unipolar resistive switching 53 3.5.2 The properties of bipolar resistive switching 54 3.5.3 Material analyze 55 3.5.4 Reliability Test 55 3.6 Compare with the resistive switching properties of three deposition substrate temperature 56 3.7 Conduction mechanisms 56 Chapter 4 Conclusion 72 Chapter 5 Future Work 73 Reference 74 Figure of Contents Chapter 1 Fig. 1-1 DRAM cell is compose of 1T1C structure 19 Fig. 1-2 SRAM structure 19 Fig. 1-3 Typical flash memory 20 Fig. 1-4 CAFM results for RRAM in (a) LRS and (b) HRS 20 Fig. 1-5 Schematic diagram for switching from LRS to HRS. (a) LRS formed by positive bias on TE. [(b)-(e)] Nucleation and propagation of a filament when negative bias is applied on TE. (f) HRS is attained 21 Chapter 2 Fig. 2-1 The illustration of TRRAM device 33 Fig. 2-2 experiment procedure 33 Fig. 2-3 Schematic illustration of the XPS 34 Fig. 2-4 The photograph of HP4156C 35 Chapter 3 Fig. 3-1 The variation of compliance current. 37 Fig. 3-2 Surface morphology image of the Gd2O3 at RT. 39 Fig. 3-3 Surface morphology image of the Gd2O3 at 200 oC. 39 Fig. 3-4 Surface morphology image of the Gd2O3 at 300 oC. 40 Fig. 3-5 The characteristics of unipolar for the LRS and HRS as measured at 0.4 V. 43 Fig. 3-6 The typical of bipolar log I-V characteristics of 43 ITO/Gd2O3 (at RT)/ITO structures. 43 Fig. 3-7 Bipolar switching cycling characteristics for the HRS and LRS in ITO/Gd2O3 (at RT)/ITO structures as measured at 0.4 V. 44 Fig. 3-8 The distributions of HRS and LRS of 44 ITO/Gd2O3 (RT)/ITO structures. 44 Fig. 3-9 The distributions of set and reset voltages of 45 ITO/Gd2O3 (RT)/ITO structures 45 Fig. 3-10 HR-TEM images of ITO/Gd2O3 (RT)/ITO structures. 45 Fig. 3-11 XPS compositional depth profile of ITO/Gd2O3 (RT)/ITO structures. 46 Fig. 3-12 The transmittance of ITO/Gd2O3 (RT)/ITO structures in visible region. 46 Fig. 3-13 Retention properties of ITO/Gd2O3 (RT)/ITO structures at RT. 47 Fig. 3-14 The characteristics of unipolar for the LRS and HRS as measured at 0.4 V. 49 Fig. 3-15 The typical of bipolar log I-V characteristics of ITO/Gd2O3 (at 200oC)/ITO structures. 50 Fig. 3-16 Bipolar switching cycling characteristics for the HRS and LRS in ITO/Gd2O3 (200oC)/ITO structures as measured at 0.4 V. 50 Fig. 3-17 Distribution of switching voltages of ITO/Gd2O3 (200oC)/ITO capacitor. 51 Fig. 3-18 The transmittance of ITO/Gd2O3 (200oC)/ITO structures in visible region. 51 Fig. 3-19 Retention properties of ITO/Gd2O3 (200oC)/ITO structures at RT. 52 Fig. 3-20 The characteristics of unipolar for the LRS and HRS as measured at 0.4 V. 59 Fig. 3-21 The typical of bipolar log I-V characteristics of ITO/Gd2O3 (300oC)/ITO structures. 59 Fig. 3-22 The multi-level characteristics by controlling Vstop 60 Fig. 3-23 The multi-level characteristics by controlling Vset 60 Fig. 3-24 Bipolar switching cycling characteristics for the HRS and LRS in ITO/Gd2O3 (300oC)/ITO structures as measured at 0.1 V. 61 Fig. 3-25 The distributions of set and reset voltages of ITO/Gd2O3 (300oC)/ITO structures. 61 Fig. 3-26 The photograph of fabricated TRRAM device. 62 Fig. 3-27 The transmittance of ITO/Gd2O3 (200oC)/ITO structures in visible region. 62 Fig. 3-28 The 2d AFM images of Gd2O3 filmes at 300oC. 63 Fig. 3-29 The 3d AFM images of Gd2O3 filmes at 300oC. 63 Fig. 3-30 XRD patterns of Gd2O3 /ITO glass and ITO glass. 64 Fig. 3-31 HR-TEM images of ITO/Gd2O3 (300oC)/ITO structures. 64 Fig. 3-32 Retention properties of Rhigh and Rlow at room temperature. 65 Fig. 3-33 Retention properties of Rhigh and Rlow at 85oC. 65 Fig. 3-34 Read disturb immunity by constant voltage stress at 0.1V. 66 Fig. 3-35 Read disturb immunity by constant voltage stress at 0.3V. 66 Fig. 3-36 Resistance distributions of varying the resistive switching parameters in ITO/Gd2O3 /ITO structures. 67 67 Fig. 3-37 On/off ratio distributions of varying the resistive switching parameters in ITO/Gd2O3 /ITO structures. 67 Fig. 3-38 Operation voltage distributions of varying the resistive switching parameters in ITO/Gd2O3 /ITO structures. 68 Fig. 3-39 Log-Log plot of the fitting curves. 68 Fig. 3-40 Dependence of resistance value on temperature. 69 Fig. 3-41 HR-TEM image of interface layer between Gd2O3 and ITO 69 Fig. 3-42 The XPS spectra of bulk......70 Fig. 3-43 The XPS spectra of interface between Gd2O3 and bottom electrode.....................70 Table of Contents Table 1-1 memory technology comparision 23 Table 1-2 Summaries of the resistive switching devices with various kinds of top electrodes 24
[1] B. J. Choi, D. S. Jeong, S. K. Kim, S. Choi, J. H. Oh, C. Rohde, H. J. Kim,C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. vol. 98, 033715, (2005). [2] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett. vol. 85, 5655 (2004). [3] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and H. S. Hwang, Appl. Phys. Lett. vol. 90, 042107 (2007). [4] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S. J. Wind, Appl. Phys. Lett. vol. 78, 3738 (2001). [5] R. Dong, Q. Wang, L. D. Chen, D. S. Shang, T. L. Chen, X. M. Li, and W. Q. Zhang, Appl. Phys. Lett. vol. 86, 172107 (2005). [6] Kyung Min Kim, Byung Joon Choi, Yong Cheol Shin, Seol Choi, and Cheol Seong Hwang, Appl. Phys. Lett. vol. 91, 012907(2007) [7] J. W. Seo, J. -W. Park, K. S. Lim, J. H. Yang, and S. J. Kang, Appl. Phys. Lett. vol. 93, 223505 (2008) . [8] L. Shi, D. Shang, J. Sun, and B. Shen, Appl. Phys. Lett. vol. 2, 101602 (2009). [9] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. vol. 76, 2749 (2004) . [10] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, IEEE Electron Device Lett. vol. 26, 719 (2005) [11] Zhao, R.; Chong, T.C.; Shi, L.P.; Tan, P.K.; Lim, K.G.; Yang, H.X.; Lee, H.K.; Hu, X.; Li, J.M.; Miao, X.S.; Wei, X.Q.; Wang, W.J.; Song, W.D, Non-Volatile Memory Technology Symposium, NVMTS05, art. no. 1541415, pp. 110-114”, (2005). [12] S. Seo, M. J. Lee, D.C. Kim, S. E. Ahn, B.-H. Park, Y.S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J.S. Choi, J.H. Lee, S.H. Jeon, S.H. Hong, and B.H. Park, Appl Phys Lett., vol. 87, p.263507, (2005). [13] C.Y. Lin, C.Y. Wu, C. Y. Wu, T.C. Lee, F.L. Yang, C. Hu, and T.Y. Tseng, IEEE Electron Device Lett., vol. 28, no. 5, pp. 366-368, (2007). [14] H.S. Lee, J. Bain, S. Choi, and P. A. Salvador, Appl. Phys. Lett., vol. 90, p. 202107, (2007). [15] H.Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. H. Lee, W. Kim, Y. Park, I. K. Yoo, and H. Hwang, IEDM tech. Dig., pp.777-780, (2005). [16] A. Asamitu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature, vol. 388, pp.50-52, (1997). [17] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., vol. 85, no 18, pp. 4073-4075, (2004). [18] C.Y Lin, C. Y. Wu, T. Y. Tseng, and C. Hu, “Modifeid resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode,” J. Appl. Phys., vol. 102, p. 094101, (2007). [19] H. S. Lee, J. Bain, S. Choi, and P. A. Salvador, “ Electrode influence on the transport through SrRuO3 / metal junctions,” Appl. Phys. Lett., vol. 90,p. 202107, (2007). [20] D. S. Shang, L. D. Chen, Q. Wang, W. Q. Zhang, Z. H. Wu, and X. M. Li,“Temperature dependence of current-voltage characteristics of Ag/La0.7Ca0.3 MnO3/Pt heterojunctions,” Appl. Phys. Lett., vol. 89, p. 172102, (2006). [21] Musarrat Hasan, Rui Dong, H. J. Choi, D. S. Lee, D.-J. Seong, M. B. Pyun, and Hyunsang Hwangb, Appl. Phys. Lett., vol. 92 , 202102(2008) [22]R. E. Thurstans and D. P. Oxley, “The electroformed metal/insulator/metal structure: a comprehensive model,” J. Phys D, vol. 35, pp.802-809, (2002). [23] A chen et al. IEDM, (2005). [24] Krzysztof szot, Wolfgang speier, Gustav bihlmayer, and Rainer waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,nature material, Vol. 5, 2006, pp. 312-320. [25] D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee , B.-H. Park, I. K. Yoo, I. G. Baek,a H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J.T. Moon, and B.I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Applied Physics Lett., vol. 88, , 2006, p. 202102. [26] Shangqing Liu, Naijuan Wu, Alex Ignatiev, and Jianren Li, “Electric-pulse-induced capacitance change effect in perovskite oxide thin films,” Journal of Applied Physics, vol. 100, p. 056101, (2006). [27] Xin Chen, NaiJuan Wu, John Strozier, and Alex Ignatiev, “Spatially extended nature of resistive switching in perovskite oxide thin films,"Applied Physics Lett., vol. 89, 2006, p. 063507. [28] Dongsoo Lee, Dong-jun Seong, Hye jung Choi, Inhwa Jo, R. Dong ,W. Xiang, Seokjoon Oh, Myeongbum Pyun, Sun-ok Seo, Seongho Heo, Minseok Jo, Dae-Kyu Hwang, H. K Park, M. Chang, M. Hasan, and Hyunsang Hwang“Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,"IEDM, pp. 1-4, (2006). [29] Doo Seok Jeong, Herbert Schroeder, and Rainer Waser, “Impedance spectroscopy of TiO2 thin films showing resistive switching,"Applied Physics Lett., vol. 89, p. 082909, (2006). [30] Kohei FUJIWARA, Takumi NEMOTO, Marcelo J. ROZENBERG, Yoshinobu NAKAMURA, and Hidenori TAKAGI, “Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices,” Japanese Journal of Applied Physics, vol. 47, No. 8, pp. 6266-6271, (2008). [31] Akihito Sawa, “Resistive switching in transition metal oxides, “review articles, materials today, vol. 11, No. 6, , pp. 28-36, (2008). [32] Kyung Min Kim, Byung Joon Choi, and Cheol Seong Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films,” Applied Physics Letters 90, p. 242906, (2007). [33] Young Ho Do, June Sik Kwak, Jin Pyo Hong, Kyooho Jung, and Hyunsik Im , Japanese Journal of Applied Physics, vol. 104 No 114512(2008). [34] Hisashi Shima, Ni Zhong, and Hiro Akinaga , “Applied Physis Letters 94, 082905 (2009). [35] R. N. Blumenthal, J. Coburn, J. Baukus, and W. M. Hirthe, J. Phys. Chem. Solids 27, 643 (1966). [36] Kentaro Kinoshita, Tetsuro Tamura, Masaki Aoki, Yoshihiro Sugiyama and Hitoshi Tanaka, “Lowering the Switching Current of Resistance Random Access Memory Using a Hetero Junction Structure Consisting of Transition Metal Oxides,” Japanese Journal of Applied Physics, vol. 45, No. 37, pp. L991-L994, (2006). [37] M. Yin, P. Zhou, H. B. Lv, J. Xu, Y. L. Song, X. F. Fu, T. A. Tang, B. A. Chen, and Y. Y. Lin, “Improvement of Resistive Switching in CuxO Using New RESET Mode,” IEEE, Vol. 29, No. 7, (2008). [38] Bing Sun, Lifeng Liu, Nuo Xu, Bin Gao, Yi Wang, Dedong Han, Xiaoyan Liu, Ruqi Han, and Jinfeng Kang, “The Effect of Current Compliance on the Resistive Switching Behaviors in TiN/ZrO2/Pt Memory Device," Japanese Journal of Applied Physics, Vol. 48, p. 04C061, (2009). [39] Yoshihiro Sato, Koji Tsunoda, Kentaro Kinoshita, Hideyuki Noshiro, Masaki Aoki, and Yoshihiro Sugiyama, “Sub-100-μA Reset Current of Nickel Oxide Resistive Memory Through Control of Filamentary Conductance by Current Limit of MOSFET,"IEEE, vol. 55, No. 5, (2008). [40] Seung-Eon Ahn, Myoung-Jae Lee, Youngsoo Park, Bo Soo Kang, Chang Bum Lee, Ki Hwan Kim, Sunae Seo, Dong-Seok Suh, Dong-Chirl Kim, Jihyun Hur, Wenxu Xianyu, Genrikh Stefanovich, Huaxiang Yin, In-Kyeong Yoo, Jung-Hyun Lee, Jong-Bong Park, In-Gyu Baek, and Bae Ho Park, “Write Current Reduction in Transition Metal Oxide Based Resistance-Change Memory," Advanced Materials, vol. 20, pp. 924-928, (2008). [41] X. Cao • X.M. Li • X.D. Gao • Y.W. Zhang • X.J. Liu • Q.Wang •L.D. Chen. “Effects of the compliance current on the resistive switching behavior of TiO2 thin films.” Appl Phys Lett., (2009) [42] C. Rohde, B.J. Choi, D.S. Jeong, S. Choi, J.-S. Zhao, C.S. Hwang, Appl. Phys. Lett. 86, 262907 (2005). [43] D. S. Shang , L. D. Chen, Q. Wang, W. D. Yu, X. M. Li, J. R. Sun, and B. G. Shen , “Crystallinity dependence of resistance switching in La0.7Ca0.3MnO3 films grown by pulsed laser deposition,” Journal of Applied Physics 105, 063511 (2009). [44] An Chen, Member, IEEE, Sameer Haddad, Member, IEEE, and Yi-Ching Wu, “A Temperature-Accelerated Method to Evaluate Data Retention of Resistive Switching Nonvolatile Memory,"IEEE, vol. 29, no. 1, pp. 38-40, (2008) [45] Jang-Sik Lee, Chang-Seok Kang, Yoo-Cheol Shin, Chang-Hyun Lee, Ki-Tae Park, Jong-Sun Sel, Viena Kim, Byeong-In Choe, Jae-Sung Sim, Jungdal Choi and Kinam Kim, “Data Retention Characteristics of Nitride-Based Charge Trap Memory Devices with High-k Dielectrics and High-Work-Function Metal Gates for Multi-Gigabit Flash Memory,"Japanese Journal of Applied Physics, vol. 45, No. 4B, pp. 3213-3216, (2006). [46] Jang-Sik LEE, and Seung-Li Joo, “Enhanced Fatigue and Data Retention Characteristics of Pb(Zr,Ti)O3 Thin Films by the Selectively Nucleated Lateral Crystallization Method,"Japanese Journal of Applied Physics, vol. 40, no. 1, 2001, pp. 229-233, (2001). [47] H. B. Lv, M. Yin, X. F. Fu, Y. L. Song, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, “Resistive Memory Switching of CuXO Films for a Nonvolatile Memory Application," IEEE, vol. 29, no. 4, 2008, pp. 309-311, (2008). [48] Agostino Pirovano, Andrea Redaelli, Fabio Pellizzer, Federica Ottogalli, Marina Tosi, Daniele Ielmini, Andrea L. Lacaita, Senior Member, IEEE, and Roberto Bez,“Reliability Study of Phase-Change Nonvolatile Memories,"IEEE, vol. 4, no. 3, 2004, pp. 422-427, (2004). [49] R. Dong, Q. Wang, L. D. Chen, D. S. Shang, T. L. Chen, X. M. Li, and W. Q. Zhang, “Retention behavior of the electric-pulse-induced reversible resistance change effect in Ag-La0.7Ca0.3MnO3-Pt sandwiches, “Applied Physics Lett., vol. 86, p. 172107, (2005). [50] R. Soni, C. Schindler, M. Weides, A. Rüdiger, C. Kügeler, R. Waser, “A Novel Dual-Layered Electrolytic Resistance Memory with Enhanced Retention,” IEEE, pp. 764-766, (2008). [51] Musarrat Hasan, Rui Dong, H. J. Choi, D. S. Lee, D.-J. Seong, M. B. Pyun, and Hyunsang Hwang, Applied Physics Lett., vol. 92, 202102 (2008). [52] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament Conduction and Reset Mechanism in NiO-Based Resistive Switching memory Devices, IEEE Trans. Electron., vol. 56, no. 2,pp 186-192, Feb. (2009). [53] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM, “IEEE IEDM Tech. Dig., pp.775-778, Dec. (2007). [54] S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D. W. Kim, and T. W. Noh, “Occurrence of Both Unipolar Memory and Threshold Resistance Switching in a NiO Film, “Phys. Rev. Lett., vol. 102, pp.0268011-0268015, January (2009). [55] G. Dearnaley, A. M. Stoneliam, and D. V. Morgan, “Electrical phenomena in amorphous oxide films,” Rep. Prog. Phys., vol. 33, pp. 1129-1191, (1970). [56] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, Appl. Phys. Lett. 91, 012907 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top