跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐陽為廉
研究生(外文):Wei-Lien Ou Yang
論文名稱:探討不同週期形狀結構對微帶線串擾的影響
論文名稱(外文):The influence of various geometry of subwavelength periodic structure on the crosstalk between microstrip lines
指導教授:吳俊傑吳俊傑引用關係
指導教授(外文):Jin-Jei Wu
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:59
中文關鍵詞:微帶線亞波長週期串擾人工表面電漿波表面電漿
外文關鍵詞:Microstrip linessubwavelength periodic structurecrosstalkspoof surface plasma wavessurface plasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要研究不同週期形狀結構對微帶線(Microstrip Line)串擾(Crosstalk)的影響並通過適當選擇微帶線週期形狀結構來減少串擾。這是一種亞波長(Subwavelenth)週期結構的微帶線,在金屬上引入光蝕刻(PhotoLithography)技術,使電磁場在金屬與介質的界面上互相影響,產生一種能在低頻傳播的人工表面電漿波(Spoof Surface Plasma Wave, SSPW)。這種人造金屬結構能使電磁場高度的束縛在微帶線周圍,因此可以有效的降低微帶線串擾。我們使用模擬軟體計算亞波長週期結構的色散,證實這類型的亞波長週期結構符合等效的表面電漿(Surface Plasma)性質。並且透過實驗結果發現,當兩條傳輸線距離等於微帶線寬的時後,量測頻率範圍在0.2 GHz~8 GHz,遠端串擾(Far-end crosstalk)的S參數(S-Parameter)較低於傳統微帶線,所以它非常適合用於高密度的微波電路或是高速電路的系統。在論文的最後,考慮不同週期形狀的微帶線,將遠端串擾與傳輸的S參數作一比較。
The subject of the present thesis is to reduce the crosstalk of microstrip lines by choosing the proper geometry of the subwavelength periodic structures. Such a kind of subwavelength periodically structured microstrip lines that is fabricated by photolithography on metals can lead to unusual interaction of EM fields on the interface between metal and dielectric, and hence a propagating low-frequency SSPW (Spoof Surface Plasma Waves) can be generated (excited). As such artificial metallic structures can make the EM fields highly localized in the microstrip lines, the crosstalk between microstrip lines can be dramatically reduced. We address the dispersion of the subwavelength periodic structures by numerical simulation, and demonstrate that the present structures can exhibit the property of the effective surface plasma. The experimental results show that the S-parameters in the frequency range 0.2 GHz~8 GHz are much lower than those in conventional microstrip lines when the distance between two transmission lines is equal to the microstrip line width. This, therefore, means that such subwavelength periodically structured microstrip lines could be utilized to design new electronic devices, which can have potential applications in high density microwave circuits and high speed circuit systems. In addition, the microstrip lines with various geometry (periodic structures and shapes), among which the far-end crosstalk and
S-parameters are compared, are also taken into account.
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 引言 1
1.2 金屬與介質界面的表面電漿波 1
1.3 人工表面電漿與亞波長結構的研究 3
1.4 色散與衰減常數的模擬 4
1.4.1 色散的模擬方法 4
1.4.2 衰減常數的模擬方法 5
1.5 微帶線模型與S參數 5
1.6 研究動機與方向 6
第二章 亞波長週期結構(A)模擬與實驗 7
2.1 亞波長週期結構(A)參數 7
2.2 亞波長週期結構(A)的色散與衰減常數 7
2.3 亞波長週期結構(A)的S參數模擬 13
2.4 亞波長週期結構(A)的S參數實驗 19
第三章 亞波長週期結構(B)模擬與實驗 24
3.1 亞波長週期結構(B)參數 24
3.2 亞波長週期結構(B的色散與衰減常數 24
3.3 亞波長週期結構(B)的S參數模擬 25
3.4 亞波長週期結構(B)的S參數實驗 29
第四章 亞波長週期結構(C)模擬與實驗 33
4.1 亞波長週期結構(C)參數 33
4.2 亞波長週期結構(C)色散與衰減常數 33
4.3 亞波長週期結構(C)S參數模擬 35
4.4 亞波長週期結構(C)S參數實驗 39
4.5 不同形狀週期微帶線的S參數比較 43
第五章 結論與未來展望 44
參考文獻 45
碩士期間發表的論文 47

1. Kami, Y. and R. Sato, Crosstalk of finite length transmission lines in arbitrary
directions on the same ground, Proc. 1992 IEEE Int. Symp. Electromagn. Compat.,
247-250, Aug. 1992.
2. Raether, H., Surface plasmons, Berlin:Springer-Verlag, 1988.
3. Barnes, W.L.; Dereux, A. and Ebbesen, T.W., Surface plasmon subwavelength optics,
Nature 2003, 424, (6950), 824-830.
4. Zayats, A.V.; Smolyaninov, II and Maradudin, A.A., Nano-optics of surface plasmon
polaritons, Physics Reports-Review Section of Physics Letters 2005, 408, (3-4),
131-314
5. Fang, N.; Lee, H.; Sun, C. and Zhang, X., Sub-diffraction-limited optical imaging with
a silver superlens, Science 2005, 308, (5721), 534-537.
6. Liu, Z.W.; Wei, Q.H. and Zhang, X., Surface plasmon interference nanolithography,
Nano Letters 2005, 5, (5), 957-961.
7. 邱國斌、蔡定平,金屬表面電漿簡介,物理雙月刊,28 卷2 期,P472-475,2006。
8. 吳民耀、劉威志,表面電漿子理論與模擬,物理雙月刊,28 卷2 期,P488,2006。
9. Pendry, J.B.; Martin-Moreno, L. and Garcia-Vidal, F.J., Mimicking surface plasmons
with structured surfaces, Science 2004, 305, (5685), 847-848.
10. A. P. Hibbins, B.R. Evans, J. R. Sambles., Experimental Verification of Designer
Surface plasmons, Science 308, 670 (2005).
11. Garcia-Vidal, F.J.; Martin-Moreno, L. and Pendry, J.B., Surfaces with holes in them:
New plasmonic metamaterials, Journal of Optics a-Pure and Applied Optics 2005, 7,
(2), S97-S101.
12. Jeon, T.I.; Zhang, J.Q. and Grischkowsky, D., Thz sommerfeld wave propagation on a
single metal wire, Applied Physics Letters 2005, 86, (16), 161904.
13. Chen, Y.Y.; Song, Z.M.; Li, Y.F.; Hu, M.L.; Xing, Q.R.; Zhang, Z.G.; Chai, L. and
Wang, C.Y., Effective surface plasmon polaritons on the metal wire with arrays of
subwavelength grooves, Optics Express 2006, 14, (26), 13021-13029.
14. Maier, S.A.; Andrews, S.R.; Martin-Moreno, L. and Garcia-Vidal, F.J., Terahertz
surface plasmon-polariton propagation and focusing on periodically corrugated metal
wires, Physical Review Letters 2006, 97, (17), 176805.
15. Shen, L.F.; Chen, X.D.; Zhong, Y. and Agarwal, K., Effect of absorption on terahertz
surface plasmon polaritons propagating along periodically corrugated metal wires,
Physical Review B 2008, 77, (7), 075408.
16. Moreno, E.; Rodrigo, S.G., Bozhevolnyi, S.I., Martin-Moreno, L. and Garcia-Vidal,
F.J., Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,
Physical Review Letters 2008, 100, (2), 023901.
17. Novikov, I.V. and Maradudin, A.A., Channel polaritons, Physical Review B 2002, 66,
(3), 035403.
18. Fernandez-Dominguez, A.I.; Moreno, E.; Martin-Moreno, L. and Garcia-Vidal, F.J.,
Guiding terahertz waves along subwavelength channels, Physical Review B 2009, 79,
(23), 233104.
19. L. F. Shen, X. D. Chen, T. J. Yang, Terahertz surface plasmon polaritons on
periodically corrugated metal surfaces., Opt. Express 16, 3326 (2008).
20. Wu, J. J.; Yang T. J. and Shen, L. F., Subwavelength microwave guiding by a
periodically corrugated metal wire. J. of Electromagn. Wave and Appl., Vol. 23, 11-19,
2009.
21. Courant, R., Variational methods for the solution of problems of equilibrium and
vibrations, Bulletin of the American Mathematical Society 1943, 49, 1-23.
22. Kong, J.A., Electromagnetic wave theory, Cambridge, Massachusetts: EMW
Publishing, 2005.
23. Pozar, David M., Microwave engineering. 3rd ed. Hoboken, NJJ. Wileyc 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top