1. Ueda Y., “Randomly transitional phenomena in the system governed by Duffing’s equation,” J. Stat. Phys. 20, 181-196,1979.
2. Oldham K.B. and Spanier J., The fractional calculus, Academic Press. New York, 1974.
3. Podlubny I., Fractional differential equations, Academic Press, New York, 1999.
4. Miller K.S. and Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley, New York,1993.
5. Lorenz E.N., “Deterministic non-periodic flow,” Journal of Atmospheric Science, Vol. 20, pp.130-141, 1963.
6. Fujisaka H. and Yamada T., “Stability theory of synchronized motion in coupled-oscillator systems,” Progr. Theor. Phys, Vol. 69, pp. 32-47, 1983.
7. Pecora L.M. and Carroll T.L., “Synchronization in chaotic systems,” Phys. Rev. Lett, Vol. 64, pp. 821-824, 1990.
8. Koller R.C., “Application of fractional calculus to the theory of viscoelasticity,” ASME J. Appl. Mech., Vol.51, pp.299-307, 1984.
9. Mainardi F., “Fractional relaxation in anelastic solids,” J. Alloys Comp., Vol.211-1, pp.534-538, 1994.
10. Pritz T., “Analysis of four-parameter fractional derivative model of real solid materials,” J. Sound Vib., Vol.195, pp.103-115, 1996.
11. Papoulia K.D. and Kelly J.M., “Visco-hyperelastic model for filled rubbers used in vibration isolation,” ASME J. Eng. Mater. Technol., Vol.119, pp.292-297, 1997.
12. Koh C.G. and Kelly J.M., “Application of fractional derivatives to seismic analysis of base-isolated models,” Earthquake Eng. Struct. Dyn.; Vol.19, pp.229-241, 1990.
13. Makris N. and Constantinou M.C., “Spring-viscous damper systems of combined seismic and vibration isolation,” Earthquake Eng. Struct. Dyn., Vol.21, pp.649-664, 1992.
14. Shimizu N. and Zhang W., “Fractional calculus approach to dynamic problems of viscoelastic materials,” JSME , Vol.42, pp.825-837, 1999.
15. Rossikhin Y.A. and Shitikova M.V., “Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids,” Appl. Mech. Review, Vol.50, pp.15-67, 1997.
16. Friedrich C., Schiessel H., and Bllumen A., “Constitutive behavior modeling and fractional derivatives,” Advances in the Flow and Rheo. Of Non-Newtonian Fluids-Part A, Siginer DA, Chabra RP, Kee De. Eds., Elsevier, Amsterdam, pp.429-466, 1999.
17. Kempfle S., Schafer I., and Beyer H., “Fractional calculus via functional calculus: theory and applications,” Nonlinear Dyn., Vol.29, pp.99-127, 2002.
18. 葉祖銘, “杜芬方程式具分數微分阻尼之動力分析,” 中華大學機械工程學系碩士論文, 2006.19. 陳思佑, “分數階陳李系統電路實現與秘密通訊,” 中華大學機械工程學系碩士論文, 2009.20. Chang C.M. and Chen H.K., "Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems", Nonlinear Dyn., 2010, doi: 10.1007/s11071-010-9767-6.
21. Caputo M., “Linear models of dissipation whose Q is almost frequency independent-II,” Geophys J. R. Astron Soc., Vol.13, pp.529-539, 1967.
22. Diethelm K., Ford N.J. and Freed A.D., “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dyn., Vol.29, pp.3-22, 2002.
23. Leszczynski J. and Ciesielski M., “A numerical method for solution of ordinary differential equations of fractional order,” arXiv:math.NA/0202276 V1 26 Feb 2002.
24. El-Sayed A.M.A., El-Mesiry A.E.M., and El-Saka H.A.A., “Numerical solution for multi-term fractional (arbitrary) orders differential equations,” Comput., Vol.23, pp.33-54, Math. 2004.
25. Diethelm K. and Ford N.J., “Multi-order fractional differential equations and their numerical solution,” Appl. Math. and Comput., Vol.154, pp.621-640, 2004.
26. Charef A., Sun H.H., Tsao Y.Y., and Onaral B., “Fractal System as Represented by Singularity Function,” IEEE Transactions on Automatic Control, vol. 37, no. 9, pp. 1465-1470, 1992.
27. Wang F.Q. and Liu C.X., “Study on the critical chaotic system with fractional order and circuit experiment,” Acta Physica Sinica vol. 55, no. 8, pp. 3922-3927, 2006.