跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.218) 您好!臺灣時間:2024/11/07 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周長志
研究生(外文):Chang-Chih Chou
論文名稱:氮硼共摻雜二氧化鈦的合成及鑑定與光催化應用
論文名稱(外文):Synthesis, Characterization and Photocatalytical Applications of N, B-codoped Titanium (IV) Oxide
指導教授:許憲呈
指導教授(外文):Shiann-Cherng Sheu
學位類別:碩士
校院名稱:長榮大學
系所名稱:職業安全與衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:80
中文關鍵詞:硼共摻雜二氧化鈦溶膠凝膠法光觸媒
外文關鍵詞:NB-codopedTitanium (IV) oxidesol-gel methodphotocatalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
由於二氧化鈦的穩定性、低價格及低毒性,在環境的應用上是最佳的光催化劑。然而,因為它大的能隙差(銳鈦礦 3.2 eV),只有在紫外線的照射下(波長< 387 nm)才被視為是活性光催化劑。本研究中以雜氟硼酸銨為氮及硼先驅物的改質二氧化鈦,在可見光照射下氮、硼共摻雜二氧化鈦的光催化活性。在製備樣本主要是以氟硼酸銨為氮、硼來源,使用溶膠凝膠法可製備氮、硼共摻雜二氧化鈦。使用紫外光可見光分光譜儀、X射線光電子光譜分析、X- ray 繞射法、拉曼光譜光分析法和掃描式電子顯微鏡等儀器,分析鑑定製備改質後的二氧化鈦粉體特性。在紫外光-可見光的照射下,以亞甲基藍的降解作為改質二氧化鈦光催化活性的評估。最後實驗測試後,發現氮、硼共摻雜二氧化鈦分析的結果發現:硼、氮順利的摻雜於二氧化鈦的晶格中,且吸收波中有紅移現象。在亞甲基藍光催化降解實驗中發現,本研究製備改質的二氧化鈦在對亞甲基藍的降解效率明顯優於純的二氧化鈦和P25等樣本的降解效率。在本研究中我們合成催化能力隨不同比例氟硼酸銨而變化並且我們試的去尋找在最佳條件下製備氮、硼共摻雜TiO2,光催化活性測試實驗中也可以發現紫外光-可見光的照射下對亞基藍溶液降解是重要的條件之一。
Titanium (IV) oxide is the best photocatalyst for widespread environmental applications due to its stability, low cost, and non-toxicity. However, because of its large band gap (3.2 eV for anatase), TiO2 can be considered as the active photocatalyst only under ultraviolet (UV) light (wavelength < 387 nm). Therefore, in this study we report the synthesis of modification Titanium (IV) oxide, using ammonium terafluoroborate as the N and B precursors, and the photocatalytic activity of N, B-codoped TiO2 under visible light. N, B-codoped TiO2 was obtained by a modified sol-gel method with ammonium terafluoroborate as the N and B source. The TiO2 catalyst was characterized by UV/VIS spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction method (XRD), Raman spectroscopy analysis and scanning electron microscope (SEM). The photocatalytic activity was evaluated by the degradation of methylene blue (MB) under UV/VIS light. The results found that boron and nitrogen was doped into the titanium (IV) oxide lattice and this N, B-codoped TiO2 had a phenomenon of red shift. In photocatalytic degradation methylene blue experiments, the modified TiO2 photocatalyst shows better activity those that of the pure and P25 titanium (IV) oxide. In this study we prepare the modification titanium (IV) oxide photocatalyst which catalytic abilities vary with different molar ratios of ammonium terafluoroborate. We found the synthesis of N, B-codoped TiO2 in an optimum condition is important for the photocatalytic degradation of methylene blue under UV/VIS light irradiation.
目錄
誌謝 I
中文摘要 II
Abstract III
表目錄 VII
圖目錄 VIII
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
1.3 研究架構 3
第二章 文獻探討 4
2.1光觸媒簡介 4
2.2二氧化鈦介紹 4
2.3氮摻雜二氧化鈦 8
2.4二氧化鈦光催化反應機制 10
2.5二氧化鈦的製備 14
2.5.1水熱法 ( Hydrothermal Method ) 14
2.5.2化學氣相沉積法 ( Chemical Vapor Synthesis ) 14
2.5.3溶膠凝膠法 ( Sol-gel Method ) 15
2.6 亞甲基藍的介紹 18
第三章 材料與方法 21
3.1實驗樣品材料 21
3.1.1實驗藥品 21
3.1.2實驗儀器 22
3.2粉體製備 27
3.2.1氮、硼共摻雜二氧化鈦樣本製備流程 27
3.2.2氮摻雜二氧化鈦樣本製備流程 29
3.2.3硼摻摻雜二氧化鈦樣本製備流程 30
3.2.4氮、硼共摻雜二氧化鈦粉體高溫燒結程序 31
3.3樣本命名 32
3.4光催化降解實驗 33
3.4.1光催化降解實驗步驟 34
3.4.2光催化降解空白實驗步驟 34
3.5實驗分析儀器原理 35
3.5.1掃描式電子顯微鏡 (SEM ) 35
3.5.2拉曼光譜 ( Raman ) 37
3.5.3 X- ray 繞射法(XRD) 38
3.5.4 X射線光電子光譜分析 (XPS ) 39
3.5.5反射式紫外線-可見光吸收光譜儀 (UV/Vis ) 40
3.6實驗方法分析 41
3.6.1光催化降解亞甲基藍實驗分析 41
3.6.2光催化降解亞甲基藍實驗步驟: 42
3.6.3檢量線的建立 42
第四章 結果與討論 43
4.1實驗結果 43
4.1.1掃描電子顯微鏡(SEM)分析 43
4.1.2拉曼光譜 ( Raman )分析 46
4.1.3 X- ray 繞射法(XRD)分析 48
4.1.4 X射線光電子光譜分析 ( XPS )分析 51
4.1.5反射式紫外線-可見光吸收光譜儀 ( UV/Vis )分析 61
4.1.6光催化降解實驗 64
第五章 結論與建議 72
5.1結論 72
5.2建議 74
參考文獻 75
Ahmed, M. S., Attia, Y. A. (1995) Aerogel materials for photocatalytic detoxification of cyanide wastes in water , J. Non-crystalline Solids,186, pp.402-407.
Akurati K.K., Bhattacharya S.S., Winterer M., Hahn (2006) Synthesis, characterization and sintering of nanocrystalline titania powders produced by chemical vapour synthesis, J. Phys. D: Appl. Phys. 39:2248–2254.
Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293:269-271.
Bettinelli M., Dallacasa V., Falcomer D., Fornasiero P., Gombac V., Montini T., Roman`o L., Speghini A. (2007) Photocatalytic activity of TiO2 doped with boron and vanadium, Journal of Hazardous Materials 146:529–534.
Bettinelli M., Speghini A., Falcomer D., Daldosso M., Dallacasa V., Roman`o L. (2006) Photocatalytic, spectroscopic and transport properties of lanthanide-doped TiO2 nanocrystals, J. Phys.: Condens. Matter 18 : S2149–S2160.
Campostrini R., Carturan G., Palmisano L., Schiavello M. (1994) A. Sclafani, sol–gel derived anatase TiO2 — morphology and photoactivity, Mater. Chem. Phys. 38:277–283.
Cao Y.A., Yang W.S., Zhang W.F., Liu G.Z., Yue P.L. (2004) Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition, New J. Chem. 28:218–222.
Chen X., Zhang X., Su Y., Lei L. (2008) Preparation of visible-light responsive P–F-codoped TiO2 Nanotubes, Applied Surface Science 254 :6693–6696.
Cong Y., Chen F., Zhang J.L., Anpo M. (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity, Chem. Lett. 35:800–801.
Di Valentin C., Pacchioni G., Selloni A. (2005) Theory of carbon doping of
titanium dioxide, Chem. Mater. 17:6656–6665.
Di Valentin C., Pacchioni G., Selloni A., Livraghi S., Giamello E. (2005) Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations , J. Phys. Chem. B 109: 11414-11419.
Fengyu W., Liangsuo N., Peng C. (2008) Preparation and characterization of N–S-codoped TiO2 photocatalyst and its photocatalytic activity, Journal of Hazardous Materials 156:135–140.
Fujishima A. Honda K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238-237.
Herrmann M., Disdier J., Pichat P., Prahov L.T. (1984) Room temperature hydrogen production from aliphatic alcohols over uv-illuminated powder Ni/TiO2 catalysts , Chem. Phys. Lett. 108-618.
Hoffmann M. R., Martin S. T., Choi W. and Bahnemann D. W. (1995) Environmental applications of semiconductor photocatalysis, Chem. Rev. 20:69-95.
Inagaki M., Nakazawa Y., Hirano M., Kobayashi Y. (2001) Toyoda M., Preparation of stable anatase-type TiO2 and its photocatalytic performance, Int. J. Inorg. Mater.
3: 809–811.
Irie H., Watanabe Y., Hashimoto K. (2003) Carbon-doped anatase TiO2 powders
as a visible light-sensitive photocatalyst, Chem. Lett. 32:772–773.
Jeremy K. Burdett, Timothy Hughbanks, Gordon J. Miller, James W. Richardson, and Joseph V. Smith, (1987) Structural-Electronic Relationships in Inorganic Solids:Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc., 109, 3639.
Kittel C. (1986) Introduction to Solid State Physics, John Wiley and Sons,6th Edition.
Linsebigier A.L., Lu G., Yates J.T. (1995) Photocatalysis on TiO2 surface:Principles,Mechanism,and Selected Results, Chemistry Reviews 95: 735-758.
Litter M.I., Navio J.A. (1994) Comparison of the photocatalytic efficiency of TiO2 iron-oxides and mixed Ti(IV) Fe(III) oxides - photodegradation of oligocarboxylic acids, J. Photochem. Photobiol. A: Chem. 84:183–193.
Minghua Zhou, Jiaguo Yu, (2008) Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders, Journal of Hazardous Materials 152:1229–1236.
Noguchi D., Kawamata Y., Nagatomo T. (2005) The response of TiO2 photocatalysts codoped with nitrogen and carbon to visible light, J. Electrochem. Soc. 152 : D124–D129.
Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M. (2004) Preparation of s-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal., A 265 :115–121.
Ovenstone J. (2001) Preparation of novel titania photocatalysts with high activity,
J. Mater. Sci. 36:1325–1329.
Pelizzetti E., Minero C., Borgarello E., Tinucci L., Serpone N. (1993) Photocatalytic Activity, Selectivity of titania colloids and particles prepared by the sol–gel technique — photooxidation of phenol and atrazine, Langmuir 9: 2995–3001.
Reddy K. M., Baruwati B., Jayalakshmi M., Rao M.M., Manorama S.V. (2005) S-, N- and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study, J. Solid State Chem. 178:3352–3358.
Richardson S.D., Thruston A.D., Collette T.M., Patterson K. S., Lykins B.W., Ireland J.C. (1996) Environmental Science and Technology, 30: 3327-3334.
Sakai H., Cai R.X., Baba R., Hashimoto K., Kubota Y., Fujishima A.( 1993) Purification and Treatment of Water and Air, 651.
Sakthivel S., Kisch H. (2003) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide, Chem. Phys. Chem. 4:487–490.
Sclafani A., Palmisano L., Davi E. (1991) Photocatalytic degradation of phenol in aqueous polycrystalline TiO2 dispersions—the influence of Fe3+, Fe2+ and Ag+ on the reaction rate, J. Photochem. Photobiol. A: Chem. 56:113–123.
Shen M., Wu Z.Y., Huang H., Du Y.H., Zou Z.G., Yang P. (2006) Carbon-doped
anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation, Mater. Lett. 60:693–697.
Sun H.Q., Bai Y., Cheng Y.P., Jin W.Q., Xu N.P. (2006) Preparation and characterization of visible light-driven carbon–sulfur codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45:4971–4976.
Sunda K., Kikuchi Y., Hashimoto K., Fujishima A.(1998) Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, Enviromental Sci. and Technol. 32:5, 726-728.
Szczybowski J., Brauer G., Ruske,M., Bartella J., Schroeder J., Zmelty A. (1999) Surface and Coating Techno. , 112,261.
Vainshtein B. K., Fridkin W., Indenbom V. L. (1994) Structure of Crystals. Berlin: Macmillan India Ltd.
Wilke K., Breuer H.D. (1999) Transition metal doped titania: physical properties and photocatalytic behaviour, Z. Phys. Chem.– Int. J. Res. Phys. Chem. Chem. Phys. 213 :135–140.
Xu A.W., Gao Y., Liu H.Q. (2002) The preparation, characterization, and their photocatalytic activities of rare earth-doped TiO2 nanoparticles, J. Catal. 207:151–157.
Yaling S., Song H., Xingwang Z., Xiuqin C., Lecheng L. (2008) Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes, Materials Chemistry and Physics 110: 239–246.
Yoldas,B.E. (1986) J.Mater. Sci.21,1087.
Zaleska A., Sobczak J.W., Grabowska E., Hupka J. (2008) Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light , Applied Catalysis B: Environmental 78: 92–100.
Zhan H., Tian H. (1988) Photocatlytic degradation of acid azo dyes in aqueous TiO2 suspension I.The effect of substituents , Dyes and Pigments 37(3):231-239.
Zhongbiao W., Fan D., Weirong Z., Sen G. (2008) Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride , Journal of Hazardous Materials 157: 57–63.
杜修豪 (2009) 以溶膠凝膠法製備氮氟共同摻雜二氧化鈦奈米可見光光觸媒之特性研究, 國立東華大學 應用物理研究所碩士學位論文
劉全得 (1995) 偶氮染料之二氧化鈦光催化脫色反應特性研究, 國立高雄第一科技大學 環境與安全衛生工程系碩士論文
羅志緯 (2006) 於鈦/矽基材上成長含氮二化化鈦薄膜及其作為光觸媒之材料及性質研究, 國立臺灣科技大學 化學工程系碩士學位論文
羅新璽 (2007) 電子順磁共振與紫外光至可見光吸收圖譜於二氧化鈦摻雜氮之特性研究, 國立東華大學 應用物理研究所碩士學位論文
呂宗昕 (2003) 圖解奈米科技與光觸媒 商周出版
高濂,鄭珊,張青紅,陳憲偉校訂 (2004) 奈米光觸媒媒 五南圖書出版
許明琮 (2003) 射頻磁控濺鍍法製備TiO2及TiO2-XNX光觸媒薄膜之研究 國立雲林科技大學 化學工程研究所碩士學位論文
張立德 (2002) 奈米材料 五南圖書出版
張立德、牟季美著 (2002) 奈米材料和奈米結構 滄海書局
竹內浩士 、指宿堯嗣,林振華 (2005) 光觸媒商業最前線 全華科技圖書股有限公司
陳家全,李家維,楊瑞森 (1991) 生物電子顯微鏡學 行政院國家科學委員會精密儀器發展中心編印 科學叢書4.pp.266
曾志堯 (2006) 具備Core-shell結構Ba2In2O5 光觸媒材料之製備與性質研究, 國立東華大學 材料科學與工程學研究所碩士學位論文
曹茂盛等 (2002) 奈米材料導論 學富文化事業有限公司出版
孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑主編 (1997) 儀器分析 全威
吳怡貞(2007) 利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究 國立中山大學 環境工程研究所碩士學位論文
王明光,王敏昭編著 (2003) 實用儀器分析 國立編譯館 合記圖書出版社 pp.619-623
王順輝 (2005) 濺鍍製備硼與碳摻雜二氧化鈦薄膜的可見光光觸媒之研究, 國立東華大學 應用物理研究所碩士學位論文
王勝民 (2000) 新世代的生色產品-光催化觸媒 化工資訊 pp.34-35
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊