跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂孔文
研究生(外文):Kung-Wen Lu
論文名稱:絞股藍萃取物對人類口腔癌細胞株(SAS)細胞增生與凋亡的影響
論文名稱(外文):Effects of Gynostemma pentaphyllum extracts on the proliferation and apoptosis of human oral cancer SAS cells
指導教授:賴東淵賴東淵引用關係
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:中醫學系
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:202
中文關鍵詞:絞股藍萃取物絞股藍皂苷SAS細胞株基質金屬蛋白酶-2/9
外文關鍵詞:Gynostemma pentaphyllum extractsGypenosidesSAS cellsmatrixmetalloproteinase-2/9
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1480
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
絞股藍皂苷是絞股藍萃取物中重要的組成,且有多種不同的藥理性,包括有抗腫瘤的增生及腫瘤的形成。最近研究顯示,在許多人類的癌細胞株中,絞股藍皂苷能誘發細胞週期停滯及引發細胞凋亡。然而在人類口腔癌細胞株的研究中,並沒有關於絞股藍皂苷對於DNA損傷,DNA修復的相關基因表現,細胞凋亡及預防細胞侵襲的相關報導。
本實驗的目的,為研究絞股藍皂苷對於人類口腔癌細胞株SAS其DNA損傷的影響,DNA修復的相關基因表現,細胞凋亡及細胞移動或侵襲的影響。
流式細胞儀被使用來檢測及量化SAS細胞的存活率,彗星試驗的結果顯示在絞股藍皂苷不同濃度的作用下,DNA損傷(彗星拖尾)的程度有濃度的依賴性。又在Real-time PCR的檢測下,當絞股藍皂苷的濃度為180 μg/ml,作用於SAS細胞株24小時後,將使14-3-3σ、DNA-PK、p53、ATM、ATR、BRCA1 的mRNA表現量減少。
流式細胞儀分析結果也顯示絞股藍皂苷誘導SAS細胞株細胞週期停滯在S期,且在DAPI實驗及DNA凝膠電泳的檢測下證明細胞凋亡的存在。又絞股藍皂苷誘導細胞中 ROS 、 Ca2+、 ER stress的表現增加,同時降低粒腺體膜電位的表現,引發Cytochrome c 的釋放。再由西方墨點法分析結果顯示絞股藍皂苷經由減少Bcl-2的表現,增強 Bax的表現量,進而降低粒腺體膜電位,造成Cytochrome c 的釋放,接著活化下游 Caspase-9 ,-3的活性,或藉由誘導 Endo G 從粒腺體的釋放,而導致細胞凋亡。
除了PI3K之外,絞股藍皂苷在降低SOS、Ras、uPA、FAK、Akt 、NF-κB、COX-2、 ERK1/2 、 MMP-9、 MMP-2的蛋白表現量方面,有時間的依賴性。另外絞股藍皂苷能減少MMP-2, MMP-7, MMP-9的 mRNA表現,但在FAK與Rho 其mRNA並無明顯變化。
綜合上述數據顯示, 絞股藍皂苷對人類口腔癌細胞株SAS能造成 DNA 損傷,使細胞週期停滯,同時抑制DNA 的修復,誘導細胞凋亡,並且抑制細胞的轉移和細胞侵襲的能力。


Gypenosides (Gyp) is the major component of Gynostemma pentaphyllum Makino extracts and is known to have diverse pharmacologic activities including anti-proliferation and anti-cancer effects. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage, DNA repair associated gene expression, apoptosis and in preventing invasion in human oral cancer cells.
The purpose of this study was to investigate the effects of Gyp treatment on DNA damage, DNA repair gene expression, apoptosis and the migration and invasion in human oral cancer SAS cells.
Flow cytometry analysis was used to examine and quantitate the percentage of viable SAS cells. The results from Comet assay indicated that the incubation of SAS cells with various doses of Gyp led to a longer DNA migration smear (Comet tail) when compared with control and these effects are in a dose-dependent manner. The results from real time PCR analysis indicated that 180 μg/ml of Gyp for 24 h treatment in SAS cells led to decrease 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression.
Flow cytometry analysis also indicated that Gyp induced cell cycle arrest (S phase arrest) and apoptosis in SAS cells.
Gyp induced production of ROS and Ca2+ and ER stress and decreased the levels of ΔΨm, causing Cytochrome c release. Western blotting results demonstrated that Gyp decreased Bcl-2 and increased Bax levels, decreased the levels of ΔΨm, caused Cytochrome c release, activations of Caspase-9 and -3, or induced Endo G release from mitochondria leading to apoptosis.
Gyp decreased SOS, Ras, urokinase-type plasminogen activator (uPA), focal adhesion kinase (FAK), RAC-alpha serine/threonine-protein kinase (Akt) , nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/2) and matrix metalloproteinase -9, -2 (MMP-9, MMP-2) in a time-dependent manner except phosphatidylinositol 3-kinase (PI3K) levels. In addition, Gyp decreased the mRNA levels of MMP-2, MMP-7 and MMP-9 but not FAK and Rho in SAS cells.
These observations may offer information for the molecular mechanisms leading to cell apoptosis by Gyp in SAS cells. Taken together, Gyp induced DNA damage, inhibited the DNA repair, arrested the cell cycle, induced apoptosis and inhibited the metastatic and invasive capacity of oral cancer cells in vitro.


目錄
第一章 前言 1
第二章 文獻探討 6
第一節 中醫與腫瘤的關係 6
1-1.中醫腫瘤的病因 6
1-2.中醫腫瘤的病機 7
1-3.中醫腫瘤的治法 7 1-4.中藥抗腫瘤的有效成分 9 1-5.中藥抗腫瘤的作用機轉 10
1-6.中醫治療腫瘤優勢 11
1-7.中藥治療腫瘤細胞的特性(多靶點效應) 11
第二節 絞股藍 13
2-1.天然青草藥與中藥之區別,用語等疑義 13
2-2.絞股藍為可同時提供食品使用之中藥材 13
2-3.絞股藍始載於明代朱橚著的《救荒本草》 13
2-4.別名與形態 13
2-5.種類與分佈 14
2-6.性味歸經 14
2-7.功能、主治 14
2-8.絞股藍化學成分 15
2-9.絞股藍的近代藥理研究 17
2-10.絞股藍的近代臨床研究 23
第三節 DNA 損傷(DNA damage) 24
第四節 細胞週期檢查點(cell cycle checkpoint) 25
4-1. G1/S期檢查點 25
4-2. S期檢查點 25
4-3. G2/M期檢查點 26
第五節 DNA的修復 27
第六節 細胞週期(Cell cycle) 31
6-1.細胞週期調控分子可分為三大類 31
6-2.細胞週期檢查點 32
第七節 細胞凋亡(apoptosis) 33
7-1.細胞凋亡 33
7-2.檢測細胞凋亡的方法(Annexin V-FITC/PI) 33
7-3.細胞凋亡的鑑別方法有 33
7-4.細胞凋亡路徑 34
第八節 細胞轉移 40
第三章 材料與方法 42
第一節 實驗材料 42
1-1.細胞株來源 42
1-2.藥物來源 42
1-3.藥品試劑 43
1-4.設備與器材 46
1-5.實驗動物來源 47
第二節 實驗方法 47
2-1.絞股藍與絞股藍皂苷濃度配製 47
2-2.細胞冷凍保存 48
2-3.冷凍細胞的活化 48
2-4.人類口腔癌細胞株(SAS cell lines)的培養 49
2-5.絞股藍作用於SAS細胞株細胞存活率及細胞凋亡研究 49
2-6.絞股藍皂苷誘導SAS細胞株細胞凋亡及轉移抑制研究 51
第三節 分析方法 72
3-1.數據分析 72
第四章 研究結果 73
第一節 絞股藍與絞股藍皂苷對SAS細胞株存活率的影響 73
1-1.存活率(viability) 的影響 73
第二節 絞股藍與絞股藍皂苷對SAS細胞株細胞凋亡的影響 75
2-1.細胞形態學(morphology)的影響 75
2-2.細胞凋亡的影響 76
第三節 絞股藍皂苷對細胞株SAS造成DNA損傷的影響 78
3-1.存活率(viability) 的影響 78
3-2.利用彗星試驗(comet assay)觀察細胞DNA damage現象 79
第四節 絞股藍皂苷對細胞株SAS造成細胞週期停滯的影響 81
4-1.存活率(viability) 的影響 81
4-2.細胞週期 (cell cycle)的影響 82
4-3.細胞週期停滯相關蛋白的影響 83
第五節 絞股藍皂苷對SAS修復抑制的影響 85
5-1.利用Real-time PCR 探討DNA修復相關基因的表現 85
第六節 絞股藍皂苷對SAS細胞凋亡的影響 89
6-1.細胞形態學(morphology)的影響 89
6-2.細胞凋亡(apoptosis)比例的影響 90
6-3.利用DNA凝膠電泳,檢測DNA 碎片的形成 91
6-4.利用DAPI staining觀察細胞凋亡的形態變化 92
6-5.絞股藍皂苷對SAS細胞株 ROS的影響 94
6-6.絞股藍皂苷對SAS細胞株 Ca2+的影響 96
6-7.絞股藍皂苷對SAS細胞株粒腺體膜電位的影響 98
6-8.絞股藍皂苷與NAC對SAS 存活率的影響 100
a. NAC對ΔΨm的影響 100
b. NAC對Ca2+的影響 102
c. NAC對細胞存活率及凋亡比率的影響 104
6-9.絞股藍皂苷與BAPTA對SAS 存活率的影響 105
a. BAPTA對ΔΨm的影響 105
b. BAPTA對存活率及細胞凋亡比率的影響 107
6-10.絞股藍皂苷對SAS Caspase活性的影響 108
a. Caspase-3活性影響 108
b. Caspase-8活性影響 110
c. Caspase-9活性影響 112
6-11. Caspase inhibitor 對細胞存活率及凋亡比率的影響 114
a. Z-DEVD-FMK 114

b. Z-IETD-FMK 116

c. Z-LEHD-FMK 118

d. Z-VAD-FMK 120
6-12.絞股藍皂苷對 SAS 凋亡路徑相關蛋白的影響 122
a.粒腺體路徑 122
b.內質網路徑 125
c.死亡接受器路徑 126
d.生長因數路徑 128
6-13.利用免疫螢光法及共軛焦顯微鏡探討 130
a. Cytochrome c 130
b. Endo G 130
c. AIF 131
d. GADD153 131
6-14.利用Real-time PCR 探討細胞凋亡相關基因的表現 136
第七節 細胞轉移相關實驗 140
7-1.絞股藍皂苷對SAS細胞傷口癒合分析試驗的影響 140
7-2.絞股藍皂苷對SAS 細胞移動分析試驗的影響 142
7-3.絞股藍皂苷對SAS 細胞侵入分析試驗實驗的影響 144
7-4.利用Real-time PCR 探討細胞轉移相關基因的表現 146
7-5.絞股藍皂苷對SAS細胞移動和侵入抑制相關蛋白影響 149
第八節 絞股藍皂苷對SAS 體內動物實驗 152
第五章 討論 159
第六章 結論 179
參考文獻 184
英文摘要 200
謝辭 202


1. 張彥娜, 王驊, 葉燕麗. p53基因治療宮頸癌的試驗與臨床研究. 中華實用醫藥雜誌. 2003;3:1840-1842.
2. 羅丹雲. 基因治療研究進展. 四川生理科學雜誌. 2009;31.
3. Obeid M, Tesniere A, Panaretakis T, Tufi R, Joza N, van Endert P, Ghiringhelli F, Apetoh L, Chaput N, Flament C, Ullrich E, de Botton S, Zitvogel L, Kroemer G. Ecto-calreticulin in immunogenic chemotherapy. Immunol Rev. 2007;220:22-34.
4. Croft SL. Kinetoplastida: new therapeutic strategies. Parasite. 2008;15:522-527.
5. 行政院衛生署. 衛生統計系列死因統計. 上卷. 2008.
6. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med. 1995;24:450-453.
7. Chen JC, Lu KW, Lee JH, Yeh CC, Chung JG. Gypenosides induced apoptosis in human colon cancer cells through the mitochondria-dependent pathways and activation of caspase-3. Anticancer Res. 2006;26:4313-4326.
8. 陳貴珠. 絞股藍總皂苷及柴胡皂苷-A對乳癌細胞株作用機轉探討: 中國醫學研究所, 中國醫藥大學; 1999.
9. Chen MH, Chen SH, Wang QF, Chen JC, Chang DC, Hsu SL, Chen CH, Sheue CR, Liu YW. The molecular mechanism of gypenosides-induced G1 growth arrest of rat hepatic stellate cells. J Ethnopharmacol. 2008;117:309-317.
10. 王學宏, 李明春. 中藥多糖的免疫及抗腫瘤作用研究進展. 齊魯醫學雜誌 2000;15:230-231.
11. Bergsland EK. Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health Syst Pharm. 2004;61:S4-11.
12. (明).朱橚. 救荒本草. 臺北: 臺灣商務印書館; 1967.
13. 謝宗萬, 漢拉英. 對照中藥材正名詞典: 北京科學技術出版社; 2004.
14. 吳征鎰, 周太炎, 肖培根. 新華本草綱要第二冊: 上海科學技術出版; 1991.
15. 劉壽山. 中藥研究文獻摘要 科學出版社; 1980-1984.
16. 國家中醫藥管理局《中華本草》編委會. 中華本草. 上海科學技術出版社.1999;第十四卷:532-538.
17. 《全國中草藥滙編》編寫組. 全國中草藥滙編下冊: 人民衛生出版社.
18. 鄧萍. 絞股藍. 茶葉機械雜誌. 2001.
19. 韓麗華 . 藥用絞股藍的考證和鑒定. 浙江中醫學院學報 1997;21.
20. 沈宏偉, 肖彥春, 車仁國, 金鳳燮, 魚紅閃. 絞股藍化學成分研究的現狀. 時珍國醫國藥 2008;19.
21. 沈宏偉, 肖彥春, 車仁國. 絞股藍中總皂苷的提取及含量研究.食品科技2008;33:158-160.
22. 王放, 王顯倫. 食品營養保健原理及技術: 中國輕工業出版社; 1997.
23. 唐朝正. 絞股藍與烏蘝莓鑑別. 時珍國醫國藥. 2000;11:1003.
24. 李蘭芳, 陳玲燕. 河北引種絞股藍中總皂苷,總黃酮,多糖及氨基酸的分析. 時珍國藥研究. 1997;8:151-153.
25. 羅建華, 黃鎖義. 益母草總黃酮的提取及對羥自由基的清除作用. 右江民族醫學院學報 2006; (5): 710-712. 2006:710-712.
26. 李躍春, 張國彬, 馮玲玲. 不同因數對絞股藍培養細胞的總皂苷和總黃酮影響的初步分析. 華中師範大學學報(自然科學版). 2003;38:95-97.
27. 王志芬, 孫紅祥, 孫國梅. 兩種絞股藍植物莖不同時期黃酮類成分. 科技通報 1994;10:392-393.
28. 徐翠鳳, 羅嘉梁, 王碧蘭. 絞股藍化學成分分析. 林產化工通訊. 1994:3-6.
29. 鄭小江, 劉金龍. 絞股藍研究與開發. 湖北民族學院學報. 1997;15:31.
30. 陳克克, 王喆之. 絞股藍多糖的組成分析及其對質粒DNA的保護作用. 中成藥 2009;31.
31. 王林麗, 汪潔筠. 絞股藍藥理作用及臨床應用進展. 中醫藥信息. 2002;19.
32. 馬麗萍, 趙培榮, 張惠芳. 絞股藍不同部位多糖含量的測定. 河南醫科大學學報 2000;35:445-446.
33. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem. 2000;7:715-729.
34. Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 1998;64:110-115.
35. 筱雅. 絞股藍的慢性毒性研究. 國外醫藥植物藥分冊. 2005;20.
36. 王本祥. 現代中藥藥理學: 天津科學技術出版社; 1999.
37. 李銳, 周莉玲, 蘇子仁,謝玲, 柯雪紅, 林染,周艷. 絞股藍皂苷藥動學研究. 中藥藥理與臨床 1999; 7(1): 16.
38. 龔維桂, 史紅, 呂玉娟, 張吟秋. 絞股藍對實驗動物血糖水準的 影響. 中國藥學雜誌. 1989;24: 550.
39. 錢伯初, 臧星星, 陳玨, 許衡鈞, 劉雪麗, 袁玉英,彭小英. 絞股藍總皂苷對鼠免疫功能的影響. 中國藥理學與毒理學雜誌. 1986;1:53.
40. 劉曉松, 甘駿, 黃仁彬. 廣西絞股藍總皂苷的藥理研究. 中成藥. 1989;11.
41. 劉倩嫻, 梁旻若, 陳妙歡, 萬幸, 季健民. 絞股藍總皂苷對小鼠產生白細胞介素2(IL-2)的增強效應. 中藥藥理學與臨床. 1993;9:17.
42. 王福雲. 絞股藍的初步藥理研究. 湖南中醫雜誌 1988;4(6):44. 1988;4.:44.
43. 孔祥蓁, 趙樹仲, 徐世銘. 絞股藍總皂苷對犬心血管系統作用的實驗研究. 西安醫科大學學報. 1988;9:122.
44. 陳玨. 植物藥絞股藍在日本的研究概況. 浙江藥學 1986;3:33.
45. 季暉, 龔國清, 徐黻本. 絞股藍及其復方對家蠅的延壽抗衰作用研究. 中藥藥理與臨床. 19906: 17.
46. 王麗紅. 絞股藍提取液對光老化模型小鼠皮膚組織中SOD活性MDA和HYP含量影響的實驗研究. 中醫藥學刊. 2006;24:497-499.
47. 章榮華, 張仲苗, 耿寶琴, 雍定國. 絞股藍皂苷對老齡大鼠的抗氧化作用觀察. 中國現代應用藥學雜誌 2000;17:306-308.
48. Yeo J, Kang YJ, Jeon SM, Jung UJ, Lee MK, Song H, Choi MS. Potential hypoglycemic effect of an ethanol extract of Gynostemma pentaphyllum in C57BL/KsJ-db/db mice. J Med Food. 2008;11:709-716.
49. Chen JC, Lu KW, Tsai ML, Hsu SC, Kuo CL, Yang JS, Hsia TC, Yu CS, Chou ST, Kao MC, Chung JG, Wood WG. Gypenosides induced G0/G1 arrest via CHk2 and apoptosis through endoplasmic reticulum stress and mitochondria-dependent pathways in human tongue cancer SCC-4 cells. Oral Oncol. 2009;45:273-283.
50. Lu KW, Tsai ML, Chen JC, Hsu SC, Hsia TC, Lin MW, Huang AC, Chang YH, Ip SW, Lu HF, Chung JG. Gypenosides inhibited invasion and migration of human tongue cancer SCC4 cells through down-regulation of NFkappaB and matrix metalloproteinase-9. Anticancer Res. 2008;28:1093-1099.
51. Lu HF, Chen YS, Yang JS, Chen JC, Lu KW, Chiu TH, Liu KC, Yeh CC, Chen GW, Lin HJ, Chung JG. Gypenosides induced G0/G1 arrest via inhibition of cyclin E and induction of apoptosis via activation of caspases-3 and -9 in human lung cancer A-549 cells. In Vivo. 2008;22:215-221.
52. Chen JC, Tsai CC, Chen LD, Chen HH, Wang WC. Therapeutic effect of gypenoside on chronic liver injury and fibrosis induced by CCl4 in rats. Am J Chin Med. 2000;28:175-185.
53. Chen JC, Chung JG, Chen LD. Gypenoside induces apoptosis in human Hep3B and HA22T tumour cells. Cytobios. 1999;100:37-48.
54. Wang QF, Chiang CW, Wu CC, Cheng CC, Hsieh SJ, Chen JC, Hsieh YC, Hsu SL. Gypenosides induce apoptosis in human hepatoma Huh-7 cells through a calcium/reactive oxygen species-dependent mitochondrial pathway. Planta Med. 2007;73:535-544.
55. 洪培修. 絞股藍總皂苷誘導肝癌細胞株細胞凋亡之研究: 中國醫學研究所, 中國醫藥大學; 2002.
56. Megalli S, Aktan F, Davies NM, Roufogalis BD. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats. J Pharm Pharm Sci. 2005;8:507-515.
57. 魏雲, 劉禮意, 郭曦蓉. 絞股藍總皂苷對小鼠血脂及血液流變性的影響. 醫學臨床研究. 1991;8:358.
58. 康紀年, 彭玉芳, 陶元津, 何英, 張永如, 黎文然, 周光英, 張秀英, 陳潮,陳伯煊, 張淑慎. 絞股藍治虛證及對血漿皮質醇的影響. 實用中醫藥雜誌. 1993.
59. 錢寶慶, 周平, 孫西璐, 駱燕寧, 錢慧玲. 絞股藍口服液治療高脂血癥60例. 中西醫結合雜誌 1990;10:166.
60. 李佃貴. 絞股藍沖劑治療慢性萎縮性胃炎151例. 中西醫結合雜誌. 1991;11:713.
61. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433-439.
62. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 2001;13:738-747.
63. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410:842-847.
64. Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol. 2001;13:332-337.
65. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805-816.
66. Paulovich AG, Hartwell LH. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell. 1995;82:841-847.
67. Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-Stone M, Kaufmann WK. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol. 2002;22:8552-8561.
68. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet. 2002;30:285-289.
69. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39-85.
70. O''Driscoll M, Jeggo PA. The role of double-strand break repair - insights from human genetics. Nat Rev Genet. 2006;7:45-54.
71. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542-1548.
72. Risinger MA, Groden J. Crosslinks and crosstalk: human cancer syndromes and DNA repair defects. Cancer Cell. 2004;6:539-545.
73. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003;22:5792-5812.
74. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134-147.
75. Kemp CJ, Vo K, Gurley KE. Resistance to skin tumorigenesis in DNAPK-deficient SCID mice is not due to immunodeficiency but results from hypersensitivity to TPA-induced apoptosis. Carcinogenesis. 1999;20:2051-2056.
76. O''Connor MJ, Martin NM, Smith GC. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene. 2007;26:7816-7824.
77. McCarthy EE, Celebi JT, Baer R, Ludwig T. Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol Cell Biol. 2003;23:5056-5063.
78. Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 1998;26:1551-1559.
79. Wang S, Guo M, Ouyang H, Li X, Cordon-Cardo C, Kurimasa A, Chen DJ, Fuks Z, Ling CC, Li GC. The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc Natl Acad Sci U S A. 2000;97:1584-1588.
80. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275-283.
81. Zhang XP, Liu F, Cheng Z, Wang W. Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci U S A. 2009;106:12245-12250.
82. Morrison DK. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 2009;19:16-23.
83. Schumacher B, Mondry J, Thiel P, Weyand M, Ottmann C. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. FEBS Lett. 2010;584:1443-1448.
84. Lee MH, Lozano G. Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin Cancer Biol. 2006;16:225-234.
85. Tian H, Faje AT, Lee SL, Jorgensen TJ. Radiation-induced phosphorylation of Chk1 at S345 is associated with p53-dependent cell cycle arrest pathways. Neoplasia. 2002;4:171-180.
86. Yang HY, Wen YY, Chen CH, Lozano G, Lee MH. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol. 2003;23:7096-7107.
87. Laronga C, Yang HY, Neal C, Lee MH. Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem. 2000;275:23106-23112.
88. Henrique R, Jeronimo C, Hoque MO, Carvalho AL, Oliveira J, Teixeira MR, Lopes C, Sidransky D. Frequent 14-3-3 sigma promoter methylation in benign and malignant prostate lesions. DNA Cell Biol. 2005;24:264-269.
89. Clurman BE, Roberts JM. Cell cycle and cancer. J Natl Cancer Inst. 1995;87:1499-1501.
90. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261-291.
91. Garrett MD, Fattaey A. CDK inhibition and cancer therapy. Curr Opin Genet Dev. 1999;9:104-111.
92. Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol. 1994;14:1669-1679.
93. Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994;79:573-582.
94. Spiewak Rinaudo JA, Thorgeirsson SS. Detection of a tyrosine-phosphorylated form of cyclin A during liver regeneration. Cell Growth Differ. 1997;8:301-309.
95. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73:2013-2026.
96. Gong J, Traganos F, Darzynkiewicz Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem. 1994;218:314-319.
97. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001;7:673-682.
98. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183-192.
99. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732-1735.
100. Shaltouki A, Freer M, Mei Y, Weyman CM. Increased expression of the pro-apoptotic Bcl2 family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation. Apoptosis. 2007;12:2143-2154.
101. Long S, Wilson M, Bengten E, Clem LW, Miller NW, Chinchar VG. Identification and characterization of a FasL-like protein and cDNAs encoding the channel catfish death-inducing signaling complex. Immunogenetics. 2004;56:518-530.
102. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491-501.
103. Marini P, Schmid A, Jendrossek V, Faltin H, Daniel PT, Budach W, Belka C. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer. 2005;5:5.
104. Yang GH, Li S, Pestka JJ. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol Appl Pharmacol. 2000;162:207-217.
105. Linnik KM, Herscovitz H. Multiple molecular chaperones interact with apolipoprotein B during its maturation. The network of endoplasmic reticulum-resident chaperones (ERp72, GRP94, calreticulin, and BiP) interacts with apolipoprotein b regardless of its lipidation state. J Biol Chem. 1998;273:21368-21373.
106. Mkrtchian S, Fang C, Hellman U, Ingelman-Sundberg M. A stress-inducible rat liver endoplasmic reticulum protein, ERp29. Eur J Biochem. 1998;251:304-313.
107. Mkrtchian S, Baryshev M, Matvijenko O, Sharipo A, Sandalova T, Schneider G, Ingelman-Sundberg M. Oligomerization properties of ERp29, an endoplasmic reticulum stress protein. FEBS Lett. 1998;431:322-326.
108. Szabadkai G, Rizzuto R. Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? FEBS Lett. 2004;567:111-115.
109. Ma Y, Hendershot LM. Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. J Biol Chem. 2004;279:13792-13799.
110. DuRose JB, Tam AB, Niwa M. Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol Biol Cell. 2006;17:3095-3107.
111. Momoi T. Caspases involved in ER stress-mediated cell death. J Chem Neuroanat. 2004;28:101-105.
112. Walter L, Hajnoczky G. Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr. 2005;37:191-206.
113. Tian XM, Zhang ZX. [Resveratrol promote permeability transition pore opening mediated by Ca2+]. Yao Xue Xue Bao. 2003;38:81-84.
114. Matzke M, Matzke AJ, Kooter JM. RNA: guiding gene silencing. Science. 2001;293:1080-1083.
115. Soh JW, Mao Y, Liu L, Thompson WJ, Pamukcu R, Weinstein IB. Protein kinase G activates the JNK1 pathway via phosphorylation of MEKK1. J Biol Chem. 2001;276:16406-16410.
116. Liao Y, Hung MC. Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis. Mol Cell Biol. 2003;23:6836-6848.
117. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25-33.
118. Sheng H, Shao J, DuBois RN. Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem. 2001;276:14498-14504.
119. Shang Y, Wu Y, Yao S, Wang X, Feng D, Yang W. Protective effect of erythropoietin against ketamine-induced apoptosis in cultured rat cortical neurons: involvement of PI3K/Akt and GSK-3 beta pathway. Apoptosis. 2007;12:2187-2195.
120. Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, El-Metainy S, Behnke H, Mattson MP, Krieglstein J. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci. 2003;23:8586-8595.
121. Sliva D, English D, Lyons D, Lloyd FP, Jr. Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of AP-1 and NF-kappaB. Biochem Biophys Res Commun. 2002;290:552-557.
122. Sonoda Y, Matsumoto Y, Funakoshi M, Yamamoto D, Hanks SK, Kasahara T. Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. J Biol Chem. 2000;275:16309-16315.
123. Ryu SJ, Cho KA, Oh YS, Park SC. Role of Src-specific phosphorylation site on focal adhesion kinase for senescence-associated apoptosis resistance. Apoptosis. 2006;11:303-313.
124. Kahana O, Micksche M, Witz IP, Yron I. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene. 2002;21:3969-3977.
125. 顧岩, 郝清傑, 陳積聖. 反義局部黏著斑激酶抑制肝癌侵襲生長的研究. 中華實驗外科雜誌. 2003;20:616-618.
126. Petersen J, Dandri M, Burkle A, Zhang L, Rogler CE. Increase in the frequency of hepadnavirus DNA integrations by oxidative DNA damage and inhibition of DNA repair. J Virol. 1997;71:5455-5463.
127. Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene. 2003;22:5834-5847.
128. Olive PL, Banath JP, Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res. 1990;122:86-94.
129. Yang J, Yu Y, Hamrick HE, Duerksen-Hughes PJ. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis. 2003;24:1571-1580.
130. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674-1677.
131. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286:1162-1166.
132. Chen J. Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage. Cancer Res. 2000;60:5037-5039.
133. Gardner K, Liu ET. BRCA1 function in T lymphocytes: a cellular specificity of a different kind. Breast Cancer Res. 2001;3:11-13.
134. Fuller S, Liebens F, Carly B, Pastijn A, Rozenberg S. Breast cancer prevention in BRCA1/2 mutation carriers: a qualitative review. Breast J. 2008;14:603-604.
135. Kim H, Chen J. New players in the BRCA1-mediated DNA damage responsive pathway. Mol Cells. 2008;25:457-461.
136. Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res. 2000;60:3299-3304.
137. Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science. 1998;280:1089-1091.
138. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U. Oscillations and variability in the p53 system. Mol Syst Biol. 2006;2:2006 0033.
139. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet. 2004;36:147-150.
140. Meschini R, Berni A, Ortenzi V, Mancinelli P, Palitti F. Relation between DNA repair, apoptosis and chromosomal aberrations in presence of pifithrin-alpha, an inhibitor of p53. Mutat Res. 2010.
141. Wu LY, Ding AS, Zhao T, Ma ZM, Wang FZ, Fan M. Involvement of increased stability of mitochondrial membrane potential and overexpression of Bcl-2 in enhanced anoxic tolerance induced by hypoxic preconditioning in cultured hypothalamic neurons. Brain Res. 2004;999:149-154.
142. Adams JM, Cory S. Apoptosomes: engines for caspase activation. Curr Opin Cell Biol. 2002;14:715-720.
143. 孟麗, 彭瑞雲, 高亞兵,王水明,馬俊傑,胡文華,王德文,蘇鎮濤,, 董波 徐. 高功率微波輻射後下丘腦神經元凋亡和腺粒體膜電位與Ca2+的變化. 中華勞動衛生職業病雜誌 2006;24.
144. 王輝, 董志勇, 楊文修. 大黃素影響巨噬細胞升高[Ca2+]和釋放TNF-a的作用特徵. 生物物力理學報. 2002;18:345-348.
145. 俞超芹, 淩昌全, 潘瑞萍. 大蒜素誘導卵巢癌細胞株OVCA-3凋 亡. 第二軍醫大學學學報. 1999;20:330-332.
146. Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res. 2005;29:1496-1503.
147. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21:1249-1259.
148. 張克君, 李德春, 朱東明. puma蛋白在胰腺癌中的表達及臨床意義. 世界華人消化雜誌. 2008;16: 488-492.
149. Qi F, Li A, Zhao L, Xu H, Inagaki Y, Wang D, Cui X, Gao B, Kokudo N, Nakata M, Tang W. Cinobufacini, an aqueous extract from Bufo bufo gargarizans Cantor, induces apoptosis through a mitochondria-mediated pathway in human hepatocellular carcinoma cells. J Ethnopharmacol. 2010;128:654-661.
150. Cao G, Pei W, Lan J, Stetler RA, Luo Y, Nagayama T, Graham SH, Yin XM, Simon RP, Chen J. Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J Neurosci. 2001;21:4678-4690.
151. Luo Y, Cao G, Pei W, O''Horo C, Graham SH, Chen J. Induction of caspase-activated deoxyribonuclease activity after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab. 2002;22:15-20.
152. Yoo NJ, Jeong EG, Kim MS, Ahn CH, Kim SS, Lee SH. Increased expression of endonuclease G in gastric and colorectal carcinomas. Tumori. 2008;94:351-355.
153. Guan B, Yue P, Clayman GL, Sun SY. Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol. 2001;188:98-105.
154. Secchiero P, Melloni E, Heikinheimo M, Mannisto S, Di Pietro R, Iacone A, Zauli G. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood. 2004;103:517-522.
155. Nomura J, Matsumoto K, Iguchi-Ariga SM, Ariga H. Mitochondria-independent induction of Fas-mediated apoptosis by MSSP. Oncol Rep. 2005;14:1305-1309.
156. Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol. 2008;76:1340-1351.
157. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008;8:782-798.
158. 季語祝, 王芳. MAPK信號通路與大腸癌. 腫瘤防治研究. 2009;36.
159. Lavoie JN, L''Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996;271:20608-20616.
160. Yen A, Roberson MS, Varvayanis S, Lee AT. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res. 1998;58:3163-3172.
161. Cassano A, Bagala C, Battelli C, Schinzari G, Quirino M, Ratto C, Landriscina M, Barone C. Expression of vascular endothelial growth factor, mitogen-activated protein kinase and p53 in human colorectal cancer. Anticancer Res. 2002;22:2179-2184.
162. Wu Y, Shang Y, Sun S, Liang H, Liu R. Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis. 2007;12:1365-1375.
163. Shida D, Fang X, Kordula T, Takabe K, Lepine S, Alvarez SE, Milstien S, Spiegel S. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 2008;68:6569-6577.
164. 衛利民, 劉現立, 汪雁明. FAK、uPA在胃癌原發灶及轉移淋巴結中的表達及臨床意義. 陜西醫學雜誌 2009;38.
165. Choong PF, Nadesapillai AP. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res. 2003:S46-58.
166. Kim MH, Jung MA, Hwang YS, Jeong M, Kim SM, Ahn SJ, Shin BA, Ahn BW, Jung YD. Regulation of urokinase plasminogen activator by epigallocatechin-3-gallate in human fibrosarcoma cells. Eur J Pharmacol. 2004;487:1-6.
167. 韓菲, 施琳, 烏新林. 骨橋蛋白在頭頸部腫瘤侵襲轉移中的作用. 臨床口腔醫學雜誌 2010;26.
168. Das R, Mahabeleshwar GH, Kundu GC. Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem. 2003;278:28593-28606.
169. Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K. Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol. 2001;2:544-551.
170. Pan MR, Chang HC, Hung WC. Non-steroidal anti-inflammatory drugs suppress the ERK signaling pathway via block of Ras/c-Raf interaction and activation of MAP kinase phosphatases. Cell Signal. 2008;20:1134-1141.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 陳昆仁(2003)。 九年一貫課程的校長領導理念與藝術。 教育資料與研究,53,80-89。陳雅新(2002)。國民小學校長領導能力現況研究。國立暨南大學教育政策與行政研究
2. 林明地(2006)。 Nel Noddings關懷倫理學及其在學校領導的應用。教育政策論壇,18,101-129。
3. 林明地(2003)。一位卓越國小校長的描繪。社教雙月刊,114,20-24。
4. 陳學賢(2006)。 高雄市國小校長轉型領導、學校願景發展與教師組織承諾關係之研究。 臺東大學教育學報,17-1,77-106。
5. 林明地(2005)。校長領導、權力運用與關懷專業精神。教育研究月刊,132,59-69 。
6. 吳清山、賴協志(2007)。國民小學校長知識領導之研究:角色知覺與踐行。教育與心理研究,30-2,1-29。
7. 蔡進雄(2007)。校長靈性領導的建構與發展。國民教育研究學報 ,18,1-25。
8. 陳木金(2004)。知識本位模式對我國學校領導人才培訓之啟示。教育研究,119,94-104。
9. 楊深耕(2004) 彰化縣國小初任校長導入輔導之研究。 國民教育研究集刊,12,47-59。
10. 蔡進雄(2006) 超越轉型領導:國民小學校長運用新轉型領導與教師對校長領導滿意度關係之研究。教育經營與管理研究集刊,2 ,51-77。
11. 張振成(1996):現代校長行政領導的藝術。師友月刊,352,78。
12. 秦夢群、吳勁甫(2006)。國中校長轉型領導、學校組織健康與教師組織承諾關係之研究。教育研究集刊,52-3,141-172。
13. 仲秀蓮,林新發(2005)。臺北縣市國民小學校長正向思考、領導型式與學校效能關係之研究。 彰化師大教育學報 ,94.01 ,129-153。
14. 蘇美麗(2006)。國小校長服務領導之個案研究。長榮大學學報,10-2, 51-67。