|
1. 張彥娜, 王驊, 葉燕麗. p53基因治療宮頸癌的試驗與臨床研究. 中華實用醫藥雜誌. 2003;3:1840-1842. 2. 羅丹雲. 基因治療研究進展. 四川生理科學雜誌. 2009;31. 3. Obeid M, Tesniere A, Panaretakis T, Tufi R, Joza N, van Endert P, Ghiringhelli F, Apetoh L, Chaput N, Flament C, Ullrich E, de Botton S, Zitvogel L, Kroemer G. Ecto-calreticulin in immunogenic chemotherapy. Immunol Rev. 2007;220:22-34. 4. Croft SL. Kinetoplastida: new therapeutic strategies. Parasite. 2008;15:522-527. 5. 行政院衛生署. 衛生統計系列死因統計. 上卷. 2008. 6. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med. 1995;24:450-453. 7. Chen JC, Lu KW, Lee JH, Yeh CC, Chung JG. Gypenosides induced apoptosis in human colon cancer cells through the mitochondria-dependent pathways and activation of caspase-3. Anticancer Res. 2006;26:4313-4326. 8. 陳貴珠. 絞股藍總皂苷及柴胡皂苷-A對乳癌細胞株作用機轉探討: 中國醫學研究所, 中國醫藥大學; 1999. 9. Chen MH, Chen SH, Wang QF, Chen JC, Chang DC, Hsu SL, Chen CH, Sheue CR, Liu YW. The molecular mechanism of gypenosides-induced G1 growth arrest of rat hepatic stellate cells. J Ethnopharmacol. 2008;117:309-317. 10. 王學宏, 李明春. 中藥多糖的免疫及抗腫瘤作用研究進展. 齊魯醫學雜誌 2000;15:230-231. 11. Bergsland EK. Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health Syst Pharm. 2004;61:S4-11. 12. (明).朱橚. 救荒本草. 臺北: 臺灣商務印書館; 1967. 13. 謝宗萬, 漢拉英. 對照中藥材正名詞典: 北京科學技術出版社; 2004. 14. 吳征鎰, 周太炎, 肖培根. 新華本草綱要第二冊: 上海科學技術出版; 1991. 15. 劉壽山. 中藥研究文獻摘要 科學出版社; 1980-1984. 16. 國家中醫藥管理局《中華本草》編委會. 中華本草. 上海科學技術出版社.1999;第十四卷:532-538. 17. 《全國中草藥滙編》編寫組. 全國中草藥滙編下冊: 人民衛生出版社. 18. 鄧萍. 絞股藍. 茶葉機械雜誌. 2001. 19. 韓麗華 . 藥用絞股藍的考證和鑒定. 浙江中醫學院學報 1997;21. 20. 沈宏偉, 肖彥春, 車仁國, 金鳳燮, 魚紅閃. 絞股藍化學成分研究的現狀. 時珍國醫國藥 2008;19. 21. 沈宏偉, 肖彥春, 車仁國. 絞股藍中總皂苷的提取及含量研究.食品科技2008;33:158-160. 22. 王放, 王顯倫. 食品營養保健原理及技術: 中國輕工業出版社; 1997. 23. 唐朝正. 絞股藍與烏蘝莓鑑別. 時珍國醫國藥. 2000;11:1003. 24. 李蘭芳, 陳玲燕. 河北引種絞股藍中總皂苷,總黃酮,多糖及氨基酸的分析. 時珍國藥研究. 1997;8:151-153. 25. 羅建華, 黃鎖義. 益母草總黃酮的提取及對羥自由基的清除作用. 右江民族醫學院學報 2006; (5): 710-712. 2006:710-712. 26. 李躍春, 張國彬, 馮玲玲. 不同因數對絞股藍培養細胞的總皂苷和總黃酮影響的初步分析. 華中師範大學學報(自然科學版). 2003;38:95-97. 27. 王志芬, 孫紅祥, 孫國梅. 兩種絞股藍植物莖不同時期黃酮類成分. 科技通報 1994;10:392-393. 28. 徐翠鳳, 羅嘉梁, 王碧蘭. 絞股藍化學成分分析. 林產化工通訊. 1994:3-6. 29. 鄭小江, 劉金龍. 絞股藍研究與開發. 湖北民族學院學報. 1997;15:31. 30. 陳克克, 王喆之. 絞股藍多糖的組成分析及其對質粒DNA的保護作用. 中成藥 2009;31. 31. 王林麗, 汪潔筠. 絞股藍藥理作用及臨床應用進展. 中醫藥信息. 2002;19. 32. 馬麗萍, 趙培榮, 張惠芳. 絞股藍不同部位多糖含量的測定. 河南醫科大學學報 2000;35:445-446. 33. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem. 2000;7:715-729. 34. Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 1998;64:110-115. 35. 筱雅. 絞股藍的慢性毒性研究. 國外醫藥植物藥分冊. 2005;20. 36. 王本祥. 現代中藥藥理學: 天津科學技術出版社; 1999. 37. 李銳, 周莉玲, 蘇子仁,謝玲, 柯雪紅, 林染,周艷. 絞股藍皂苷藥動學研究. 中藥藥理與臨床 1999; 7(1): 16. 38. 龔維桂, 史紅, 呂玉娟, 張吟秋. 絞股藍對實驗動物血糖水準的 影響. 中國藥學雜誌. 1989;24: 550. 39. 錢伯初, 臧星星, 陳玨, 許衡鈞, 劉雪麗, 袁玉英,彭小英. 絞股藍總皂苷對鼠免疫功能的影響. 中國藥理學與毒理學雜誌. 1986;1:53. 40. 劉曉松, 甘駿, 黃仁彬. 廣西絞股藍總皂苷的藥理研究. 中成藥. 1989;11. 41. 劉倩嫻, 梁旻若, 陳妙歡, 萬幸, 季健民. 絞股藍總皂苷對小鼠產生白細胞介素2(IL-2)的增強效應. 中藥藥理學與臨床. 1993;9:17. 42. 王福雲. 絞股藍的初步藥理研究. 湖南中醫雜誌 1988;4(6):44. 1988;4.:44. 43. 孔祥蓁, 趙樹仲, 徐世銘. 絞股藍總皂苷對犬心血管系統作用的實驗研究. 西安醫科大學學報. 1988;9:122. 44. 陳玨. 植物藥絞股藍在日本的研究概況. 浙江藥學 1986;3:33. 45. 季暉, 龔國清, 徐黻本. 絞股藍及其復方對家蠅的延壽抗衰作用研究. 中藥藥理與臨床. 19906: 17. 46. 王麗紅. 絞股藍提取液對光老化模型小鼠皮膚組織中SOD活性MDA和HYP含量影響的實驗研究. 中醫藥學刊. 2006;24:497-499. 47. 章榮華, 張仲苗, 耿寶琴, 雍定國. 絞股藍皂苷對老齡大鼠的抗氧化作用觀察. 中國現代應用藥學雜誌 2000;17:306-308. 48. Yeo J, Kang YJ, Jeon SM, Jung UJ, Lee MK, Song H, Choi MS. Potential hypoglycemic effect of an ethanol extract of Gynostemma pentaphyllum in C57BL/KsJ-db/db mice. J Med Food. 2008;11:709-716. 49. Chen JC, Lu KW, Tsai ML, Hsu SC, Kuo CL, Yang JS, Hsia TC, Yu CS, Chou ST, Kao MC, Chung JG, Wood WG. Gypenosides induced G0/G1 arrest via CHk2 and apoptosis through endoplasmic reticulum stress and mitochondria-dependent pathways in human tongue cancer SCC-4 cells. Oral Oncol. 2009;45:273-283. 50. Lu KW, Tsai ML, Chen JC, Hsu SC, Hsia TC, Lin MW, Huang AC, Chang YH, Ip SW, Lu HF, Chung JG. Gypenosides inhibited invasion and migration of human tongue cancer SCC4 cells through down-regulation of NFkappaB and matrix metalloproteinase-9. Anticancer Res. 2008;28:1093-1099. 51. Lu HF, Chen YS, Yang JS, Chen JC, Lu KW, Chiu TH, Liu KC, Yeh CC, Chen GW, Lin HJ, Chung JG. Gypenosides induced G0/G1 arrest via inhibition of cyclin E and induction of apoptosis via activation of caspases-3 and -9 in human lung cancer A-549 cells. In Vivo. 2008;22:215-221. 52. Chen JC, Tsai CC, Chen LD, Chen HH, Wang WC. Therapeutic effect of gypenoside on chronic liver injury and fibrosis induced by CCl4 in rats. Am J Chin Med. 2000;28:175-185. 53. Chen JC, Chung JG, Chen LD. Gypenoside induces apoptosis in human Hep3B and HA22T tumour cells. Cytobios. 1999;100:37-48. 54. Wang QF, Chiang CW, Wu CC, Cheng CC, Hsieh SJ, Chen JC, Hsieh YC, Hsu SL. Gypenosides induce apoptosis in human hepatoma Huh-7 cells through a calcium/reactive oxygen species-dependent mitochondrial pathway. Planta Med. 2007;73:535-544. 55. 洪培修. 絞股藍總皂苷誘導肝癌細胞株細胞凋亡之研究: 中國醫學研究所, 中國醫藥大學; 2002. 56. Megalli S, Aktan F, Davies NM, Roufogalis BD. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats. J Pharm Pharm Sci. 2005;8:507-515. 57. 魏雲, 劉禮意, 郭曦蓉. 絞股藍總皂苷對小鼠血脂及血液流變性的影響. 醫學臨床研究. 1991;8:358. 58. 康紀年, 彭玉芳, 陶元津, 何英, 張永如, 黎文然, 周光英, 張秀英, 陳潮,陳伯煊, 張淑慎. 絞股藍治虛證及對血漿皮質醇的影響. 實用中醫藥雜誌. 1993. 59. 錢寶慶, 周平, 孫西璐, 駱燕寧, 錢慧玲. 絞股藍口服液治療高脂血癥60例. 中西醫結合雜誌 1990;10:166. 60. 李佃貴. 絞股藍沖劑治療慢性萎縮性胃炎151例. 中西醫結合雜誌. 1991;11:713. 61. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433-439. 62. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 2001;13:738-747. 63. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410:842-847. 64. Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol. 2001;13:332-337. 65. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805-816. 66. Paulovich AG, Hartwell LH. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell. 1995;82:841-847. 67. Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-Stone M, Kaufmann WK. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol. 2002;22:8552-8561. 68. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet. 2002;30:285-289. 69. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39-85. 70. O''Driscoll M, Jeggo PA. The role of double-strand break repair - insights from human genetics. Nat Rev Genet. 2006;7:45-54. 71. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542-1548. 72. Risinger MA, Groden J. Crosslinks and crosstalk: human cancer syndromes and DNA repair defects. Cancer Cell. 2004;6:539-545. 73. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003;22:5792-5812. 74. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134-147. 75. Kemp CJ, Vo K, Gurley KE. Resistance to skin tumorigenesis in DNAPK-deficient SCID mice is not due to immunodeficiency but results from hypersensitivity to TPA-induced apoptosis. Carcinogenesis. 1999;20:2051-2056. 76. O''Connor MJ, Martin NM, Smith GC. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene. 2007;26:7816-7824. 77. McCarthy EE, Celebi JT, Baer R, Ludwig T. Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol Cell Biol. 2003;23:5056-5063. 78. Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 1998;26:1551-1559. 79. Wang S, Guo M, Ouyang H, Li X, Cordon-Cardo C, Kurimasa A, Chen DJ, Fuks Z, Ling CC, Li GC. The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc Natl Acad Sci U S A. 2000;97:1584-1588. 80. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275-283. 81. Zhang XP, Liu F, Cheng Z, Wang W. Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci U S A. 2009;106:12245-12250. 82. Morrison DK. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 2009;19:16-23. 83. Schumacher B, Mondry J, Thiel P, Weyand M, Ottmann C. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. FEBS Lett. 2010;584:1443-1448. 84. Lee MH, Lozano G. Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin Cancer Biol. 2006;16:225-234. 85. Tian H, Faje AT, Lee SL, Jorgensen TJ. Radiation-induced phosphorylation of Chk1 at S345 is associated with p53-dependent cell cycle arrest pathways. Neoplasia. 2002;4:171-180. 86. Yang HY, Wen YY, Chen CH, Lozano G, Lee MH. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol. 2003;23:7096-7107. 87. Laronga C, Yang HY, Neal C, Lee MH. Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem. 2000;275:23106-23112. 88. Henrique R, Jeronimo C, Hoque MO, Carvalho AL, Oliveira J, Teixeira MR, Lopes C, Sidransky D. Frequent 14-3-3 sigma promoter methylation in benign and malignant prostate lesions. DNA Cell Biol. 2005;24:264-269. 89. Clurman BE, Roberts JM. Cell cycle and cancer. J Natl Cancer Inst. 1995;87:1499-1501. 90. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261-291. 91. Garrett MD, Fattaey A. CDK inhibition and cancer therapy. Curr Opin Genet Dev. 1999;9:104-111. 92. Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol. 1994;14:1669-1679. 93. Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994;79:573-582. 94. Spiewak Rinaudo JA, Thorgeirsson SS. Detection of a tyrosine-phosphorylated form of cyclin A during liver regeneration. Cell Growth Differ. 1997;8:301-309. 95. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73:2013-2026. 96. Gong J, Traganos F, Darzynkiewicz Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem. 1994;218:314-319. 97. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001;7:673-682. 98. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183-192. 99. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732-1735. 100. Shaltouki A, Freer M, Mei Y, Weyman CM. Increased expression of the pro-apoptotic Bcl2 family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation. Apoptosis. 2007;12:2143-2154. 101. Long S, Wilson M, Bengten E, Clem LW, Miller NW, Chinchar VG. Identification and characterization of a FasL-like protein and cDNAs encoding the channel catfish death-inducing signaling complex. Immunogenetics. 2004;56:518-530. 102. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491-501. 103. Marini P, Schmid A, Jendrossek V, Faltin H, Daniel PT, Budach W, Belka C. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer. 2005;5:5. 104. Yang GH, Li S, Pestka JJ. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol Appl Pharmacol. 2000;162:207-217. 105. Linnik KM, Herscovitz H. Multiple molecular chaperones interact with apolipoprotein B during its maturation. The network of endoplasmic reticulum-resident chaperones (ERp72, GRP94, calreticulin, and BiP) interacts with apolipoprotein b regardless of its lipidation state. J Biol Chem. 1998;273:21368-21373. 106. Mkrtchian S, Fang C, Hellman U, Ingelman-Sundberg M. A stress-inducible rat liver endoplasmic reticulum protein, ERp29. Eur J Biochem. 1998;251:304-313. 107. Mkrtchian S, Baryshev M, Matvijenko O, Sharipo A, Sandalova T, Schneider G, Ingelman-Sundberg M. Oligomerization properties of ERp29, an endoplasmic reticulum stress protein. FEBS Lett. 1998;431:322-326. 108. Szabadkai G, Rizzuto R. Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? FEBS Lett. 2004;567:111-115. 109. Ma Y, Hendershot LM. Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. J Biol Chem. 2004;279:13792-13799. 110. DuRose JB, Tam AB, Niwa M. Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol Biol Cell. 2006;17:3095-3107. 111. Momoi T. Caspases involved in ER stress-mediated cell death. J Chem Neuroanat. 2004;28:101-105. 112. Walter L, Hajnoczky G. Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr. 2005;37:191-206. 113. Tian XM, Zhang ZX. [Resveratrol promote permeability transition pore opening mediated by Ca2+]. Yao Xue Xue Bao. 2003;38:81-84. 114. Matzke M, Matzke AJ, Kooter JM. RNA: guiding gene silencing. Science. 2001;293:1080-1083. 115. Soh JW, Mao Y, Liu L, Thompson WJ, Pamukcu R, Weinstein IB. Protein kinase G activates the JNK1 pathway via phosphorylation of MEKK1. J Biol Chem. 2001;276:16406-16410. 116. Liao Y, Hung MC. Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis. Mol Cell Biol. 2003;23:6836-6848. 117. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25-33. 118. Sheng H, Shao J, DuBois RN. Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem. 2001;276:14498-14504. 119. Shang Y, Wu Y, Yao S, Wang X, Feng D, Yang W. Protective effect of erythropoietin against ketamine-induced apoptosis in cultured rat cortical neurons: involvement of PI3K/Akt and GSK-3 beta pathway. Apoptosis. 2007;12:2187-2195. 120. Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, El-Metainy S, Behnke H, Mattson MP, Krieglstein J. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci. 2003;23:8586-8595. 121. Sliva D, English D, Lyons D, Lloyd FP, Jr. Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plasminogen activator through activation of AP-1 and NF-kappaB. Biochem Biophys Res Commun. 2002;290:552-557. 122. Sonoda Y, Matsumoto Y, Funakoshi M, Yamamoto D, Hanks SK, Kasahara T. Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. J Biol Chem. 2000;275:16309-16315. 123. Ryu SJ, Cho KA, Oh YS, Park SC. Role of Src-specific phosphorylation site on focal adhesion kinase for senescence-associated apoptosis resistance. Apoptosis. 2006;11:303-313. 124. Kahana O, Micksche M, Witz IP, Yron I. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene. 2002;21:3969-3977. 125. 顧岩, 郝清傑, 陳積聖. 反義局部黏著斑激酶抑制肝癌侵襲生長的研究. 中華實驗外科雜誌. 2003;20:616-618. 126. Petersen J, Dandri M, Burkle A, Zhang L, Rogler CE. Increase in the frequency of hepadnavirus DNA integrations by oxidative DNA damage and inhibition of DNA repair. J Virol. 1997;71:5455-5463. 127. Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene. 2003;22:5834-5847. 128. Olive PL, Banath JP, Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res. 1990;122:86-94. 129. Yang J, Yu Y, Hamrick HE, Duerksen-Hughes PJ. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis. 2003;24:1571-1580. 130. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674-1677. 131. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286:1162-1166. 132. Chen J. Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage. Cancer Res. 2000;60:5037-5039. 133. Gardner K, Liu ET. BRCA1 function in T lymphocytes: a cellular specificity of a different kind. Breast Cancer Res. 2001;3:11-13. 134. Fuller S, Liebens F, Carly B, Pastijn A, Rozenberg S. Breast cancer prevention in BRCA1/2 mutation carriers: a qualitative review. Breast J. 2008;14:603-604. 135. Kim H, Chen J. New players in the BRCA1-mediated DNA damage responsive pathway. Mol Cells. 2008;25:457-461. 136. Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res. 2000;60:3299-3304. 137. Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science. 1998;280:1089-1091. 138. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U. Oscillations and variability in the p53 system. Mol Syst Biol. 2006;2:2006 0033. 139. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet. 2004;36:147-150. 140. Meschini R, Berni A, Ortenzi V, Mancinelli P, Palitti F. Relation between DNA repair, apoptosis and chromosomal aberrations in presence of pifithrin-alpha, an inhibitor of p53. Mutat Res. 2010. 141. Wu LY, Ding AS, Zhao T, Ma ZM, Wang FZ, Fan M. Involvement of increased stability of mitochondrial membrane potential and overexpression of Bcl-2 in enhanced anoxic tolerance induced by hypoxic preconditioning in cultured hypothalamic neurons. Brain Res. 2004;999:149-154. 142. Adams JM, Cory S. Apoptosomes: engines for caspase activation. Curr Opin Cell Biol. 2002;14:715-720. 143. 孟麗, 彭瑞雲, 高亞兵,王水明,馬俊傑,胡文華,王德文,蘇鎮濤,, 董波 徐. 高功率微波輻射後下丘腦神經元凋亡和腺粒體膜電位與Ca2+的變化. 中華勞動衛生職業病雜誌 2006;24. 144. 王輝, 董志勇, 楊文修. 大黃素影響巨噬細胞升高[Ca2+]和釋放TNF-a的作用特徵. 生物物力理學報. 2002;18:345-348. 145. 俞超芹, 淩昌全, 潘瑞萍. 大蒜素誘導卵巢癌細胞株OVCA-3凋 亡. 第二軍醫大學學學報. 1999;20:330-332. 146. Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res. 2005;29:1496-1503. 147. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21:1249-1259. 148. 張克君, 李德春, 朱東明. puma蛋白在胰腺癌中的表達及臨床意義. 世界華人消化雜誌. 2008;16: 488-492. 149. Qi F, Li A, Zhao L, Xu H, Inagaki Y, Wang D, Cui X, Gao B, Kokudo N, Nakata M, Tang W. Cinobufacini, an aqueous extract from Bufo bufo gargarizans Cantor, induces apoptosis through a mitochondria-mediated pathway in human hepatocellular carcinoma cells. J Ethnopharmacol. 2010;128:654-661. 150. Cao G, Pei W, Lan J, Stetler RA, Luo Y, Nagayama T, Graham SH, Yin XM, Simon RP, Chen J. Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J Neurosci. 2001;21:4678-4690. 151. Luo Y, Cao G, Pei W, O''Horo C, Graham SH, Chen J. Induction of caspase-activated deoxyribonuclease activity after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab. 2002;22:15-20. 152. Yoo NJ, Jeong EG, Kim MS, Ahn CH, Kim SS, Lee SH. Increased expression of endonuclease G in gastric and colorectal carcinomas. Tumori. 2008;94:351-355. 153. Guan B, Yue P, Clayman GL, Sun SY. Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol. 2001;188:98-105. 154. Secchiero P, Melloni E, Heikinheimo M, Mannisto S, Di Pietro R, Iacone A, Zauli G. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood. 2004;103:517-522. 155. Nomura J, Matsumoto K, Iguchi-Ariga SM, Ariga H. Mitochondria-independent induction of Fas-mediated apoptosis by MSSP. Oncol Rep. 2005;14:1305-1309. 156. Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol. 2008;76:1340-1351. 157. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008;8:782-798. 158. 季語祝, 王芳. MAPK信號通路與大腸癌. 腫瘤防治研究. 2009;36. 159. Lavoie JN, L''Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996;271:20608-20616. 160. Yen A, Roberson MS, Varvayanis S, Lee AT. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res. 1998;58:3163-3172. 161. Cassano A, Bagala C, Battelli C, Schinzari G, Quirino M, Ratto C, Landriscina M, Barone C. Expression of vascular endothelial growth factor, mitogen-activated protein kinase and p53 in human colorectal cancer. Anticancer Res. 2002;22:2179-2184. 162. Wu Y, Shang Y, Sun S, Liang H, Liu R. Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis. 2007;12:1365-1375. 163. Shida D, Fang X, Kordula T, Takabe K, Lepine S, Alvarez SE, Milstien S, Spiegel S. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 2008;68:6569-6577. 164. 衛利民, 劉現立, 汪雁明. FAK、uPA在胃癌原發灶及轉移淋巴結中的表達及臨床意義. 陜西醫學雜誌 2009;38. 165. Choong PF, Nadesapillai AP. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res. 2003:S46-58. 166. Kim MH, Jung MA, Hwang YS, Jeong M, Kim SM, Ahn SJ, Shin BA, Ahn BW, Jung YD. Regulation of urokinase plasminogen activator by epigallocatechin-3-gallate in human fibrosarcoma cells. Eur J Pharmacol. 2004;487:1-6. 167. 韓菲, 施琳, 烏新林. 骨橋蛋白在頭頸部腫瘤侵襲轉移中的作用. 臨床口腔醫學雜誌 2010;26. 168. Das R, Mahabeleshwar GH, Kundu GC. Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem. 2003;278:28593-28606. 169. Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K. Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol. 2001;2:544-551. 170. Pan MR, Chang HC, Hung WC. Non-steroidal anti-inflammatory drugs suppress the ERK signaling pathway via block of Ras/c-Raf interaction and activation of MAP kinase phosphatases. Cell Signal. 2008;20:1134-1141.
|