跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪淑鋒
研究生(外文):Shu-Feng Hong
論文名稱:乳酸菌抑菌活性及其plantaricin基因組之研究
論文名稱(外文):Investigation of antibacterial activity and plantaricin gene cluster of lactic acid bacteria
指導教授:葉東柏葉東柏引用關係王淑珍王淑珍引用關係
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:生物科技系暨研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:113
中文關鍵詞:細菌素乳酸菌抑菌活性plantaricin基因組
外文關鍵詞:antibacterial activitybacteriocinplantaricinLactobacillus plantarum
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1709
  • 評分評分:
  • 下載下載:174
  • 收藏至我的研究室書目清單書目收藏:0
本研究以本實驗室所分離出之11株乳酸菌以洋菜槽擴散法(agar well diffusion test)進行抑菌活性試驗。使用的指標菌株為大腸桿菌(Escherichia coli)、沙門氏菌(Salmonella spp.)、金黃色葡萄球菌(Staphylococcus aureus)及蛀牙菌(Streptococcus mutans)。抑菌試驗顯示,11株乳酸菌對E. coli及Salmonella spp. 具有良好的抑制效果,而其中有6株乳酸菌B0013、B0039、B0106、B0125、B0126及B0134可以有效的抑制所有的指標菌。進一步以16S rDNA sequences進行序列鑑定,結果顯示B0013、B0055、B0105、B0106、B0115、B0125、B0126、B0134、B0157、B0158鑑定結果為 Lactobacillus plantarum,B0039為 Lactobacillus paracasei,而所有菌株之 16S rDNA 序列與 NCBI database進行比對,核酸相似性皆大於 99% 以上。利用聚合酶連鎖反應(PCR)及特異性引子擴增乳酸菌之 plantaricin 基因,發現B0055、B0106、B0115及B0126可擴增出大部份細菌素基因,包括 plnA、plnB、plnC、plnD、plnEF、plnI、plnJ、plnK 及 plnG 等。經鑑定後發現與Lactobacillus plantarum WCFS1之細菌素基因大多數皆具有高相似度(≧98%)。接著利用具有抑菌效果且帶有大部分細菌素基因的乳酸菌株 B0126 培養於含 2% dextrin之 DMB 培養基中發現菌數可達1.55 ×109 CFU/ml。進而利用其發酵液進行抑制 S. mutans 之儲存試驗,結果顯示儲存有效期限約為 3.5 個月。在B0126 誘導試驗中,發現B0126 與 BCRC12248 共培養時,抑制 E. coli BCRC 15375 的活性比 B0126單獨培養時佳。
In this study, 11 isolated strains of lactic acid bacteria were tested antibacterial activity by agar diffusion method, using Escherichia coli, Salmonella spp., Staphylococcus aureus and Streptococcus mutans as indicator strains. Antibacterial test results showed that all 11 lactic acid bacteria have higher inhibitin zone against E. coli and Salmonella spp.. Among of them, 6 strains of lactic acid bacteria; B0013, B0039, B0106, B0125, B0126 and B0134 showed inhibitory activity against all the indicator strains. B0013、B0055、B0105、B0106、B0115、B0125、B0126、B0134、B0157、B0158 were identified as Lactobacillus plantarum and B0039 was Lactobacillus paracasei by 16S rDNA identification. At revealed that the 16S rDNA nucleotide sequence of there isolated strains were of 99% similarity with that of NCBI database. The bacteriocin locus from isolates B0055、B0106、B0115 and B0126 showed remarkable similarity to the plantaricin loci described for Lactobacillus plantarum WCFS1. B0126 was cultured in modified DMB containg 2% of dextrin, the number of colonies were 1.55×109 CFU/ml, similar with the culture of MRS. Further more, in storage test, B0126 supernatant was against S. mutans, the results showed the antibacterial activity of storage time were about 3.5 months. In the bacteriocin induction was observed that B0126 can be induced more bacteriocin against E. coli by BCRC12248.
中文摘要…………………………………………………………………… I
英文摘要…………………………………………………………………… III
本文目錄……………………………………………………………………… V
表目錄………………………………………………………………………… X
圖目錄…………………………………………………………………… XI
縮寫表……………………………………………………………………… XII

第一章 緒論
1.1序言………………………………………………………………………… 1
1.2乳酸菌之介紹…………………………………………………………… 2
1.2.1乳酸菌之特性………………………………………………………… 2
1.2.2 乳酸菌之分類………………………………………………………… 3
1.2.3 乳酸菌之應用………………………………………………………… 6
1.2.3.1 乳酸菌在食品工業上之應用………………………………………… 6
1.2.3.2 乳酸菌在保健上之應用……………………………………………… 7
1.2.4 乳酸菌之代謝產物…………………………………………………… 10
1.3 細菌素之介紹…………………………………………………………… 12
1.3.1細菌素起源…………………………………………………………… 12
1.3.2細菌素之分類………………………………………………………… 13
1.3.3細菌素之特性………………………………………………………… 15
1.3.4細菌素之抑菌機制…………………………………………………… 16
1.3.5 Plantaricin 基因之介紹……………………………………………… 17
1.3.5.1 Plantaricin 基因之組成…………………………………………… 17
1.3.5.1.1 L. plantarum C11 與 WCFS1 之pln 基因組………………… 17
1.3.5.1.2 L. plantarum NC8、J23及J51之pln 基因組…………………… 20
1.3.5.2 細菌素操縱子與啟動子之調控…………………………………… 22
1.3.5.3 細菌素之誘導……………………………………………………… 23
1.3.5乳酸菌細菌素在食品加工上之應用………………………………… 23
第二章 材料與方法
2.1 實驗材料………………………………………………………………… 25
2.1.1培養基………………………………………………………………… 25
2.1.2實驗藥品及試劑…………………………………………………… 26
2.1.3實驗設備…………………………………………………………… 27
2.1.4實驗用菌株………………………………………………………… 27
2.2實驗方法………………………………………………………………… 28
2.2.1實驗架構……………………………………………………………… 28
2.2.2菌株保存與活化……………………………………………………… 28
2.2.2.1 菌株保存…………………………………………………………… 28
2.2.2.2菌株活化…………………………………………………………… 29
2.2.3乳酸菌抑菌活性試驗…………………………………………………… 29
2.2.3.1乳酸菌發酵液之製備………………………………………………… 29
2.2.3.2 乳酸菌發酵液抑菌活性試驗……………………………………… 29
2.2.4乳酸菌菌種及乳酸菌plantaricin基因鑑定………………………… 30
2.2.4.1染色體DNA(chromosomal DNA)之萃取……………………… 30
2.2.4.2 16S rDNA菌種鑑定………………………………………………… 31
2.2.4.3 乳酸菌plantaricin基因擴增及鑑定……………………………… 32
2.2.4.4 PCR產物回收……………………………………………………… 32
2.2.4.5 DNA定序………………………………………………………… 33
2.2.4.6 16S rDNA及plantaricin 基因序列分析比對……………………… 33
2.2.5乳酸菌發酵液儲存試驗……………………………………………… 33
2.2.5.1乳酸菌菌數分析……………………………………………………… 33
2.2.5.2乳酸菌發酵液之製備……………………………………………… 34
2.2.5.3抑制S.mutans之乳酸菌的篩選…………………………………… 34
2.2.5.4抑制S.mutans之乳酸菌儲存試驗…………………………………… 35
2.2.6細菌素誘導試驗……………………………………………………… 35
2.2.6.1乳酸菌發酵液之製備……………………………………………… 35
2.2.6.2共培養抑菌試驗…………………………………………………… 35
第三章 結果
3.1乳酸菌抑菌活性試驗………………………………………………… 36
3.2乳酸菌菌種及乳酸菌plantaricin基因鑑定…………………………… 37
3.2.1乳酸菌菌種鑑定……………………………………………………… 37
3.2.2乳酸菌plantaricin基因擴增之結果………………………………… 38
3.2.3 乳酸菌plantaricin基因鑑定………………………………………… 39
3.3乳酸菌發酵液儲存試驗………………………………………………… 40
3.3.1乳酸菌菌數分析……………………………………………………… 40
3.3.2抑制S.mutans之乳酸菌篩選…………………………………… 40
3.3.3抑制S.mutans之乳酸菌儲存試驗……………………………… 41
3.4細菌素誘導試驗…………………………………………………… 43
第四章 討論
4.1乳酸菌抑菌活性試驗………………………………………………… 44
4.2乳酸菌菌種及乳酸菌plantaricin基因鑑定…………………………… 45
4.2.1乳酸菌菌種鑑定……………………………………………………… 45
4.2.2乳酸菌plantaricin基因擴增及鑑定………………………………… 45
4.3乳酸菌發酵液儲存試驗………………………………………………… 46
4.3.1乳酸菌菌數與培養基分析………………………………………… 46
4.3.2抑制S. mutans之乳酸菌篩選………………………………………… 47
4.3.3抑制S. mutans之乳酸菌儲存試驗…………………………………… 48
4.4細菌素誘導試驗………………………………………………………… 49
第五章 結論………………………………………………………………… 51
參考文獻…………………………………………………………………… 52
附表………………………………………………………………………… 67
附圖………………………………………………………………………… 86
1.陳根德。蛀牙保健。景岳生物科技。2006。
2.Liang HF, Chen CN, Chang Y, Sung HW. Natural antimicrobial agent (reuterin) produced by Lactobacillus reuteri for sanitization of biological tissues inoculated with Pseudomonas aeruginosa. Biotechnol Bioeng. 2003;84(2):233-239.
3.Choi HJ, Cheigh CI, Kim SB, et al. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int J Syst Evol Microbiol. 2002;52(2):507-511.
4.Harris LJ, Flening GP, Klaenhammer TR. Characterization of two Nisin -producing Lactococcus lactis subsp. lactis strain isolation from a commercial sauerkraut fermentation. Appl Environ Microbiol. 1992;58:1477 -1483.
5.程孝維。產細菌素乳酸菌的分離、篩選及細菌素純化條件之研究。嘉
南藥理科技大學生物科技系碩士論文。2004。
6.陳俊嘉。由乳酸菌發酵液中分離細菌素及其特性之探討。嘉南藥理科
技大學生物科技系碩士論文。2008。
7.Diep DB, Straume D, Kjos M, Torres C, Nes IF. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides. 2009;30:1562- 1574.
8.劉廷英。農業及環境微生物菌種之收存與應用。乳酸菌專輯。財團法人食品工業發展研究所。1999。
9.陳俊成。乳酸菌之益生作用。食品資訊。2003;196:52-58。
10.De VL, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS
Microbiol Rev. 1999;23:153-177.
11.林明慧。乳酸菌調節免疫功能之探討。國立中興大學食品科學研究所
碩士論文。2003。
12.Harp E, Gilliland SE. Evaluation of a select strain of Lactobacillus
delbrueckii subsp. lactis as a biological control agent for pathogens on
fresh-cut vegetables stored at 7 degrees C. J Food Prot . 2003;66:1013-
1018.
13.蔡英傑。乳酸菌與益生菌。生物產業。1998;9:98-104。
14.Schleifer KH, R. K-B. Molecular and chemotaxonomic approaches to the
classification of streptococci, enterococci and lactococci: A review. Syst Appl Microbiol. 1987;10:1-19.
15.Pot B, Devriese LA, Hommez J, et al. Characterization and identification
of Vagococcus fluvialis strains isolated from domestic animals. J Appl
Bacteriol. 1994;77:362-369.
16.Yanagida F, Suzuki KI, Lozaki M, Komagata K. Proposal of Sporolactobac-
illus nakayamae subsp. nakayamae sp. nov. subps.nov. Sporolactobacillus nakayamae subsp. racemicus subps. nov. Sporolactobacillus terrae sp. nov. Sporolactobacillus kofuensis sp. nov. and Sporolactobacillus lactosus sp. nov. Int J Syst Bacteriol. 1997;47: 499- 504.
17.Dewhirst FE, Paster BJ, Tzellas N, et al. Characterization of novel human
oral isolates and cloned 16S rDNA sequences that fall in the family coriobacteriaceae: description of olsenella gen. nov., reclassification of lactobacillus uli as olsenella uli comb. nov. and description of olsenella profusa sp. nov. Int J Syst Evol Microbiol. 2001;51:1797-1804.
18.Mori K, Yamazaki K, Ishiyama T, et al. Comparative sequence analyses of
the genes coding for 16S rRNA of Lactobacillus casei-related taxa. Int J Syst Bacteriol. 1997;47:54-57.
19.Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current
taxonomy. Int J Food Microbiol. 1997;36:1-29.
20. 陳智強。培養條件對乳酸菌胞外多醣生產及抗氧化性之影響。台灣大
學碩士論文。2004。
21. Janssen PH, Evers S, Rainey FA, et al. Lactosphaera gen. nov., a new
genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii
Schink 1984 to Lactosphaera pasteurii comb. nov. Int J Syst Bacteriol. 1995;45:565-571.
22. Harmsen HJ, Wildeboer-Veloo AC, Grijpstra J, Knol J, Degener JE,
Welling GW. Development of 16S rRNA-based probes for the
Coriobacterium group and the Atopobium cluster and their application for
enumeration of Coriobacteriaceae in human feces from volunteers of
different age groups. Appl Environ Microbiol. 2000;66:4523-4527.
23. Kawamura Y, Hou XG, Sultana F, Liu S, Yamamoto H, Ezaki T. Transfer of Streptococcus adjacens and Streptococcus defectivus to Abiotrophia gen. nov. as Abiotrophia adiacens comb. nov. and Abiotrophia defectiva comb. nov., respectively. Int J Syst Bacteriol. 1995;45:798-803.
24. Collins MD, Lawson PA. The genus Abiotrophia (Kawamura et al.) is not
monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov. and Granulicatella balaenopterae comb. nov. Int J Syst Evol Microbiol. 2000;50:365-369.
25. Leisner JJ, Vancanneyt M, Goris J, Christensen H, Rusul G. Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid
bacterium isolated from chili bo, a Malaysian food ingredient. Int J Syst
Evol Microbiol. 2000;50:19-24.
26. Dewhirst FE, Paster BJ, Tzellas N, et al. Characterization of novel human
oral isolates and cloned 16S rDNA sequences that fall in the family
Coriobacteriaceae: description of olsenella gen. nov., reclassification of
Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella
profusa sp. nov. Int J Syst Evol Microbiol. 2001;51:1797-1804.
27. Ventura M, Zink R. Rapid identification, differentiation, and proposed new taxonomic classification of Bifidobacterium lactis. Appl Environ Microbiol. 2002;68:6429-6434.
28. Mori K, Yamazaki K, Ishiyama T, et al. Comparative sequence analyses of the genes coding for 16S rRNA of Lactobacillus casei-related taxa. Int J Syst Bacteriol. 1997;47:54-57.
29. Kabadjova P, Dousset X, Le Cam V, Prevost H. Differentiation of closely
related Carnobacterium food isolates based on 16S-23S ribosomal DNA
intergenic spacer region polymorphism. Appl Environ Microbiol. 2002;6 8:5358-5366.
30. Vaughan EE, de Vries MC, Zoetendal EG, Ben-Amor K, Akkermans AD,
de Vos WM. The intestinal LABs. Antonie Van Leeuwenhoek. 2002;82:341-352.
31. 廖啟成。乳酸菌之分類及應用。乳酸菌專輯。財團法人食品工業發展研究所。1998。
32. Arunachalam, KD. Role of Bifidobacteria in nitrition, medicine and technology. Nutr Res. 1999;19:1559-1597.
33. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. Feeding of
Bifidobacterium bifidum and Streptococcus thermophilus to infants in
hospital for prevention of diarrhoea and shedding of rotavirus. Lancet.
1994;344:1046-1049.
34.Beaugerie L, Petit JC. Microbial-gut interactions in health and disease.
Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol. 2004;18:337-352.
35.Black FT, Andersen PL, OrskovJ, Orskov F, Gaarslev K, Laulund S.
Prophylactic efficacy of lactobacilli on traveller’s diarrhea. Travel Medicine. 1989;1:333-335.
36.Arthur C. Antiallergic effects of probiotics. J Nutr. 2007;137:794-797.
37.Blaise CH, Rex G, Annick M. Cross-Talk between Probiotic Bacteria
and the Host Immune System. J Nutr. 2007;137:781-790.
38.Benno Y, Mitsuoka T, Kanazawa K. Human fecal flora in health and colon
cancer. Acta Chir Scand. 1991;62:15-23.
39.Brashears MM, Gilliland SE, Buck LM. Bile salt deconjugation and
cholesterol removal from media by Lactobacillus casei. J Dairy Sci. 1998;81:2103-2110.
40.Chiu CH, Lu TY, Tseng YY, Pan TM. The effects of Lactobacillus
fermented milk on lipid metabolism in hamsters fed on high-cholesterol
diet. Appl Microbiol Biotechnol. 2006;71:238-245.
41.楊媛絢。原生保健性菌種(probiotics)與益菌助生質(prebiotics)之應
用。乳酸菌專輯。財團法人食品工業發展研究所。1997。
42.Jiang T, Mustapha A, Savaiano DA. Improvement of lactose digestion in
humans by ingestion of unfermented milk containing Bifidobacterium
longum. J Dairy Sci. 1996;79:750-757.
43.Lin MY, Yen CL. Reactive Oxygen Species and Lipid Peroxidation
product-Scavenging ability of yogurt organisms. J Dairy Sci. 1998;82:162 9-1634.
44.Ahotupa M, Saxelin M, Korpela M. Antioxidative properties of
Lactobacillus GG. Nutr. Today. 1996;33:51S-52S.
45.Ita PS, Hutkins RW. Intracellular pH and survival of Listeria
Monocytognes Scott A in tryptic soy broth containing acetic, lactic, citric, and hydrochloric acids. J Food Prot. 1991;54:15-19.
46.Nitisinprasert S, Nilphai V, Bunyun P, et al. Screening and identification of
effective thermotolerantlactic acid bacteria producing antimicrobial activity against Escherichia coli and Salmonella spp. resistant to antibiotics. Kasetsart J. 2000;34:387-400.
47.蘇遠志。應用微生物學。國立編譯館。華香園出版社。1999。
48.Annuk H, Shchepetova J, Kullisaar T, et al. Characterization of intestinal
lactobacilli as putative probiotic candidates. J Appl Microbiol. 2003;94:40 3-412.
49.Cabo ML, Pastoriza L, Sampedro G, Gonzalez M, Murado MA. Joint effect
of nisin, CO2, and EDTA on the survival of Pseudomonas aeruginosa and Enterococcus faecium in a food model system. J Food Prot. 2001;64:1943 -1948.
50.Axelsson LT, Chung TC, Dobrogosz WJ, et al. Production of a broad
spectrum antimicrobial substance by Lactobacillus reuteri. Microb Ecol
Health Dis. 1989; 2:131-136.
51.El-Ziney MG, Vanden TT, Debevere J, et al. Application of reuterin
produced by Lactobacillus reuteri 12002 for meat decontamination and
preservation. J Food Prot. 1999;62:257-261.
52.Huttunen E, Noro K, Yang ZN. Purification and identification of
antimicrobial substances produced by two Lactobacillus casei strains. Int
Dairy J. 1995;5:503-513.
53.Hoefnagel MHN, Starrenburg MJC, Martens DE, et al. Metabolic
engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology
2002;148:1003-1013.
54.Tagg JR, Dajani AS, Wannamker LW. Bacteriocin of Gram-positive
Bacteria. Bacterio Rev. 1976;40:722-756.
55.Buyong N, Kok J, Luchansky JB. Use of a genetically enhanced, pediocin-
producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese. Appl Environ Microbiol. 1998;64(12):4842-4845.
56.Reeves P. The Bacteriocins. Bacteriol Rev. 1965;29:24-45.
57.Marugg JD. Bacteriocin, their role in developing natural products. Food
Biotechnol. 1991;5:305-312.
58. Gaidenko TA, Khaikinson M. Cloning of the genes controlling the
biosynthesis of bacitracin in Bacillus licheniformis. Mol Gen Mikrobiol
Virusol. 1988;24-28.
59.Miranda CM, Farias LM, Carvalho MA, et al. Purification and partial
characterization of a bacteriocin isolated from Bacteroides ovatus H47.
Can J Microbiol. 1993;39:169-174.
60.Siragusa GR, Cutter CN. Brochocin-C, a new bacteriocin produced by
Brochothrix campestris. Appl Environ Microbiol. 1993;59:2326-2328.
61.Ahn C, Stiles ME. Plasmid-associated bacteriocin production by a strain
of Carnobacterium piscicola from meat. Appl Environ Microbiol. 1990;
56:2503-2510.
62.Salzano G, Villani F, Pepe O, et al. Conjugal transfer of plasmid-borne
bacteriocin production in Enterococcus faecalis 226 NWC. FEMS
Microbiol Lett. 1992;78:1-6.
63.Grinstead DA, Barefoot SF. Jenseniin G, a heat-stable bacteriocin produced
by Propionibacterium jensenii P126. Appl Environ Microbiol. 1992;58:215-220.
64.Sano Y, Kageyama M. A novel transposon-like structure carries the genes
for pyocin AP41, a Pseudomonas aeruginosa bacteriocin with a DNase domain homology to E2 group colicins. Mol Gen Genet. 1993;237:161- 170.
65.Toora S, Bala AS, Tiwari RP, Singh G. Production of bacteriocin by
isolates of Yersinia enterocolitica from fresh buffalo milk. Folia
Microbiol . 1989;34:151-156.
66.Muriana PM, Klaenhammer TR. Conjugal transfer of plasmid-encoded
determinants for bacteriocin production and immunity in Lactobacillus
acidophilus 88. Appl Environ Microbiol. 1987;53:553-560.
67.De Klerk HC, Smit JA. Properties of a Lactobacillus fermenti bacteriocin. J
Gen Microbiol. 1967;48:309-316.
68.Joerger MC, Klaenhammer TR. Characterization and purification of
helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986;167:439-446.
69.Omar NB, Abriouel H, Keleke S, et al. Bacteriocin-producing
Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons Int J Food Microbiol. 2009;127:18-25.
70.Biswas SR, Ray P, Johnson MC, Ray B. Influence of growth conditions
on the production of a bacteriocin, pediocin AcH, by Pediococcus
acidilactici H. Appl Environ Microbiol. 1991;57:1265-1267.
71.Daeschel MA, Klaenhammer TR. Association of a 13.6-megadalton
plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl
Environ Microbiol. 1985;50:1538-1541.
72.Jack RW, Tagg JR, Ray B. Bacteriocins of Gram-positive bacteria.
Microbiol Rev. 1995;59:171-200.
73.Bierbaum G, Gotz F, Peschel A, Kupke T. The biosynthesis of the
lantibiotics epidermin, gallidermin, Pep5 and epilancin K7. Antonie van
Leeuwenhoek. 1996;69:119-127.
74.Twomey D, Ross RP, Ryan M, Meaney B, Hill C. Lantibiotics produced
by lactic acid bacteria: Structure, function and applications. Antonie van Leeuwenhoek. 2002;82:165-185.
75.Clevland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: Safe,
natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71:1-20.
76.Gravesen A, Ramnath M, Björn Rechinger K, et al. High-levelresistance to
class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology. 2002;148:2361-2369.
77.Ennahar S, Sashihara T, Sonomoto K, Ishizaki A. Class IIa bacteriocins:
Biosynthesis, structure and activity. FEMS Microbiol Rev. 2000;24:85-106.
78.Dykes GA, Hastings JW. Fitness costs associated with class IIa bacteriocin
resistance in Listeria monocytogenes B73. Lett Appl Microbiol. 1998;26:5-8.
79.Moll G, Hildeng-Hauge H, Nissen-Meyer J, et al. Mechanistic properties of
the two component bacteriocin lactococcin G. J Bacteriol. 1998;180:96 -99.
80.Abee T, Klaenhammer TR, Letellier L. Kinetic studies of the action of
lacticin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol. 1994;60:1006-1013.
81.Abee T, Krockel L, Hill C. Bacteriocin: Modes of action and potentials in
food preservation and control of food poisoning. Int J Food Microbiol.
1995;28:169-185.
82.Lee SS, Hsu JT, Mantovani HC, Russell JB. The effect of bovicin HC5, a
bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbio Lett. 2002;217:51-55.
83.Daeschel MA. Antimicorbial substances from lictic acid bacteria for use
as food preservatives. Food Technol.1989;43:164-167.
84.Nettles CG, Barefoot SF. Biochemical and genetic characteristics of
bacteriocins of food associated lactic acid bacteria. J Food Prot. 1993;
56:3338-3356.
85.Tramer J, Fowler GG. Estimation of nisin in food. J Sci Food Agric. 1964;
15:522-528.
86.Daba H, Pandian S, Gosselin JF, et al. Detection and activity of a
bacteriocin produced by Leuconostoc mesenteroides. Appl Environ
Microbiol. 1991;57:3450-3455.
87.Hechard Y, Deijard B, Letellier F, Cenatiempo Y. Characterization and
purification of mesentericin Y 105, an anti-Listeria bacteriocin form Leuconostoc mesenteroides. J Gen Microbiol. 1992;138:2725-2731.
88. Diep DB, Havarstein LS, Nes IF. Characterization of the locus responsible
for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol.
1996;178:4472-4483.
89. Kleerebezem M, Boekhorst J, Van Kranenburg R, et al. Complete genome
sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA.
2003;100:1990-1995.
90. Maldonado A, Ruiz-Barba JL, Jimenez-Diaz R. Purification and genetic
characterization of plantaricin NC8, a novel coculture-inducible two-peptide
bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol.
2003;69:383-389.
91. Navarro L, Rojo-Bezares B, Saenz Y, et al. Comparative study of the pln
locus of the quorum-sensing regulated bacteriocin-producing L. plantarum
J51 strain. Int J Food Microbiol. 2008;128:390-394.
92. Rojo-Bezares B, Saenz Y, Navarro L, et al. Characterization of a new
organization of the plantaricin locus in the inducible bacteriocin-producing Lactobacillus plantarum J23 of grape must origin. Arch Microbiol. 2008;189:491-499.
93. Havarstein LS, Diep DB, Nes IF. A family of bacteriocin ABC transporters
carry out proteolytic processing of their substrates concomitant with export.
Mol Microbiol. 1995;16:229-240.
94. Pei J, Grishin NV. Type II CAAX prenyl endopeptidases belong to a novel
superfamily of putative membrane-bound metalloproteases. Trends Biochem
Sci. 2001;26:275-277.
95. Anderssen EL, Diep DB, Nes IF, Eijsink VG, Nissen-Meyer J. Antagonistic
activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins,
plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ
Microbiol. 1998;64:2269-2272.
96. Gerdes K, Christensen SK, Lobner-Olesen A. Prokaryotic toxin-antitoxin
stress response loci. Nat Rev Microbiol. 2005;3:371-382.
97. Rojo-Bezares B, Saenz Y, Navarro L, et al. Coculture-inducible bacteriocin
activity of Lactobacillus plantarum strain J23 isolated from grape must.
Food Microbiol. 2007;24:482-491.
98. Diep DB, Mathiesen G, Eijsink VG, Nes IF. Use of lactobacilli and their
pheromone-based regulatory mechanism in gene expression and drug
delivery. Curr Pharm Biotechnol. 2009;10:62-73.
99. Eijsink VG, Axelsson L, Diep DB, et al. Production of class II bacteriocins
by lactic acid bacteria; an example of biological warfare and communication
-n. Antonie Van Leeuwenhoek. 2002;81:639-54.
100. Kleerebezem M. Quorum sensing control of lantibiotic production; nisin
and subtilin autoregulate their own biosynthesis. Peptides. 2004;25:1405
-1414.
101. Nes IF, Diep DB, Havarstein LS, et al. Biosynthesis of bacteriocins in
lactic acid bacteria. Antonie Van Leeuwenhoek. 1996;70:113-128.
102. Diep DB, Havarstein LS, Nes IF. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol. 1995;18:631-639.
103. Maldonado-Barragan A, Ruiz-Barba JL, Jimenez-Diaz R. Knockout of
three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. Int J Food Microbiol. 2009;130:35-42.
104. Maldonado A, Jimenez-Diaz R, Ruiz-Barba JL. Induction of plantaricin
production in Lactobacillus plantarum NC8 after coculture with specific
gram-positive bacteria is mediated by an autoinduction mechanism. J
Bacteriol. 2004;186:1556-1564.
105. Tabasco R, Garcia-Cayuela T, Pelaez C, Requena T. Lactobacillus
acidophilus La-5 increases lactacin B production when it senses live target bacteria. Int J Food Microbiol. 2009;132:109-116.
106. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J. Applications
of the bacteriocin, nisin. Antonie van Leeuwenhoek. 1996;69:193-202.
107. 江靜雯。Lactobacillus acidophilus LC1 細菌素之生產及其在牛乳保鮮上之應用。國立海洋大學食品科學系碩士論文。2000。
108. Delevs-Broughton J. Nisin and its uses as a food preservative. J Food
Prot. 1990;10:100-117.
109. 吳建威。Pediococcus pentosaceus ACCEL 所產細菌素之純化、作用機
制及應用之探討。國立海洋大學食品科學系博士論文。2006。
110. Piddock LJV. Techniques used for the determination of antimicrobial
resistance and sensitivity in bacteria. J Appl Bacterol. 1990;68:307-318.
111. Michael AT, Christine LE, Douglas CY. Molecular phylogenetic evidence
for noninvasive zoonotic transmission of Staphylococcus intermedius from
a canine pet to a human. J of Clinical Microbiol. 2000;0:1628-1631.
112. Saenz Y, Rojo-Bezares B, Navarro L, et al. Genetic diversity of the pln
locus among oenological Lactobacillus plantarum strains. Int J Food
Microbiol. 2009;134:176-183.
113. Lin CM, Moon SS, Doyle MP, McWatters KH. Inactivation of Escherichia
coli O157:H7, Salmonella enterica serotype enteritidis, and Listeria
monocytogenes on lettuce by hydrogen peroxide and lactic acid and by
hydrogen peroxide with mild heat. J Food Prot. 2002;65:1215-1220.
114. Carminati D, Giraffa G, Bossi MG. Bacteriocin-like inhibitors of Strepto- coccus lactis against Listeria monocytogenes. J Food Prot. 1989;52:614- 617.
115. Schillinger U, Lűcke FK. Identification of Lactobacilli from meat and meat products. Food Microbiol. 1987;4:199-208.
116. Spelhaug SR, Harlander SK. Inhibition of foodborne bacterial pathogens by bacteriocins from Lactobacillus lactis and Pediococcus pentosaceus. J Food Prot. 1989;52:856-862.
117. Knoll C, Divol B, Du Toit M. Genetic screening of lactic acid bacteria of
oenological origin for bacteriocin-encoding genes. Food Microbiol. 2008;
25:983-991.
118. 汪昭期。醱酵條件和保護劑對 Lactobacillus reuteri Pg 4 保存之探討。國立中興大學畜產學系碩士論文。2004。
119. De VL, Vandamme EJ. Antimicrobial potential of lactic acid bacteria. In
bacteriocin of lactic acid bacteria. Microbiology genetics and applications.
Chapman and Hall:London UK, 91-142.
120. Berry ED, Liewen MB, Mandigo RW, Hutkins RW. Inhibition of Listeria monocytogenes by bacteriocin-producing Pediococcus during the manufacture of fermented semidry sausage. J Food Protect. 1990;53: 194-197.
121. Nikawa H, Makihira S, Fukushima H, et al. Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol. 2004;95:219-223.
122. Nuňez M, Rodriguez JL, Garcia E, Gaya P, Medina M. Inhibition of Listeria monocytogenes by enterocin 4 during the manufacture and ripening of Manchego cheese. J Appl Microbiol. 1997;83:671-677.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top