跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古茜雅
研究生(外文):Kulchaya Tanong
論文名稱:缺-好氧MBR系統處理垃圾滲出水之薄膜阻塞研究
論文名稱(外文):Fouling study on anoxic-oxic membrane bioreactor for treatment of landfill leachate
指導教授:張家源張家源引用關係
指導教授(外文):Chang, Chia-Yuan
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:129
中文關鍵詞:薄膜生物反應程序海綿A/O程序薄膜阻塞修正阻塞指數
外文關鍵詞:Membrane bioreactor (MBR)Sponge A/O processMembrane foulingModified fouling index (MFI)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:812
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用缺-好氧MBR系統處理來自台南安定飛灰掩埋場的垃圾滲出水,研究各程序下對薄膜阻塞的情形。系統由缺氧槽 (6L) 與MBR (12L) 所組成,總有效體積為18L。控制系統的水力停留時間 (HRT) 2天及污泥停留時間 (SRT) 50天。
研究分為3階段進行,第一階段無缺氧槽,第二階段缺氧-好氧MBR系統啟動,缺氧槽與MBR的迴流比為1Q,於缺氧槽添加碳源以供給脫硝作用所需。第三階段改變缺氧槽與MBR的迴流比為2Q。
系統添加糖蜜後,使得有機污染物開始減少。MLVSS對於有機污染物的去除效率有顯著的關係,在第二階段活性污泥於缺氧槽與MBR增長至4,550 - 9,100 mg/L 6,120 - 10,250 mg/L與,在第三階段活性污泥於缺氧槽與MBR增長至6,175 - 12,900 mg/L與6,125 -13,500 mg/L,由研究顯示,添加糖蜜後,對於TCOD、SCOD、氨氮與總氮的去除率可以達到88 %,86 %,100 % 與84%。
修正阻塞指標 (MFI) 是一種用於薄膜系統判定薄膜阻塞的指標。在MFI研究中發現,食微比 (F/M ratio),胞外聚合物 (EPS)、懸浮固體物、顆粒粒徑分布、比阻抗 (α) 與薄膜孔徑之間的關係。由研究顯示,當MLSS大量附著於薄膜時,MFI會增加,比阻抗也隨之增加,使得出流水的流通量減少。當好氧-MBR處於低食微比、污泥粒徑較小、有較高EPS產生、有高濃度總有機碳時,也會造成MFI增加。本研究亦由Carmen-Kozeny 方程式、生物特性與操作特性來解釋MFI與幾個參數間複雜的關係。
An anoxic-oxic membrane bioreactor (MBR) process is presented to treating high contaminated landfill leachate from An-ding plant. The system operated with total working volume is equal to 18 L which separated into two tanks, the first tank is anoxic condition (6 L) and the second tank is oxic condition (12 L) respectively. Hydraulic retention time (HRT) was set at 2 days and sludge were discharged to maintain solid retention time (SRT) which are equal to 50 days.

The study consisted of three phases. The first phase was operated without anoxic bioreactor. For the second phase operated with anoxic-oxic MBR, 1Q recirculation rate and molasses was supplied in anoxic tank as an extra carbon source for denitrification. The third stage, system had changed the recirculation rate from 1Q to 2Q. At the initial start-up stage, the operation got some problems such as foaming, sludge washed out and poor removal efficiency of chemical oxygen demand (COD) and nitrogen compound which is consider as common operation problems for biological treatment of landfill leachate.

Successive reduction of organic pollutants were achieved after molasses addition, the average mixed liquor volatile suspended solids (MLVSS) and removal efficiency of organic pollutant increased obviously. The sludge in anoxic tank was increased up to the 4,550-9,100 mg/L and 6,175-12,900 mg/L on the second stage and the third stage respectivly. The sludge in oxic tank was increased up to 6,120-10,250 mg/L and 6,125-13,500 mg/L on the second stage and the third stage respectivly. The results of this study illustrated that the highest removal efficiencies of TCOD, SCOD, ammonia nitrogen (NH4+-N) and total nitrogen (TN) were 88%, 86%, 100% and 84%, respectively.

The relationship between foods per mass ratio (F/M ratio), extracellular polymeric substance (EPS) production, mixed liquid suspended solid (MLSS), particle size distribution, specific cake resistance (α) and membrane pore size with modified fouling index (MFI) were found. The MFI is method to measure fouling potential in membrane system. Factors effect to membrane fouling is too complex to explain by only one parameter. The results from this experiment found that, specific cake resistance was increased when MFI increased which results from high MLSS accumulated on membrane surface and may reduce permeate flux and system performance. Also at low F/M ratio, small particle size, high EPS production, high total organic carbon (TOC) concentration in oxic-MBR all are result in high MFI value. The complex relationship between several parameters and MFI was explained by Carmen-Kozeny equation, biomass characteristic and physical operation etc.
Chapter Title Page
Chinese Abstract i
Abstract ii
Acknowledgments v
Table of Contents vi
List of Tables vii
List of Figures x
List of Abbreviations xiiii

1 Introduction 1
1.1 Background 1
1.2 Objectives 4
1.3 Scope of the Study 5
2 Literature Review 6
2.1 Landfill Wastewater 6
2.2 Nitrification and Denitrification 8
2.3 Introduction to Membrane Processes 11
2.3.1 Membrane Processes 11
2.3.2 Membrane Bioreactor 11
2.3.3 Aerobic and Anaerobic MBRs 14
2.3.4 Membrane Operation Parameters 15
2.4 Membrane Fouling 17
2.5 Factor Affecting on Membrane Fouling 18
2.5.1 Effect of Influent Concentration 19
2.5.2 Effect of Operating Conditions 20
2.5.3 Biomass Characteristics 22
2.6 Modified Fouling Index and Cake Filtration 26 Resistance

3 Methodology 28
3.1 Material 29
3.1.1 Sponge and Membrane Characteristics 29
3.1.2 Sludge Seeding 30
3.1.3 Characteristics of Landfill Leachate 31
3.2 Laboratory Scale MBR 32
3.3 Sludge and Filtration Parameter 34
3.3.1 Cake Filtration Index 35
3.3.2 Determination of MFI 35
3.3.3 Specific cake resistance and 37
Compressibility Index
3.4 Analytical Determinations 37
3.4.1 Photometric Analysis 37
3.4.2 Determination of EPS 37
3.4.3 Determination of 38
Particle Size Distribution
3.4.4 Membrane Cleaning 40

4 Results and discussion 40
4.1 COD Removal Efficiency 40 4.2 Nitrogen Removal Efficiency 43
4.3 Microbial Characteristic in 49
Anoxic and Oxic Tank
4.4 Modified Fouling Index 51
4.4.1 MFI0.1 on the Second Stage 52
4.4.2 MFI0.1 on the Third Stage 61
4.4.3 MFI0.45 on the Second Stage 64
4.4.4 MFI Experiment at Different 68 Membrane Pore Size
4.4.5 MFI Experiment at Different 72
Sludge Concentration
4.5 TMP and Flux Profile 75
4.6 SEM Determination 77 4.6.1 Membrane (SEM) on the Second Stage 77
4.6.2 Membrane (SEM) on the Third Stage 84

4.6.3 Sponge (SEM) on the Second Stage 85
4.6.4 Sponge (SEM) on the Third Stage 87

5 Conclusion and Recommendations 88
5.1 Conclusion 88
5.2 Recommendations 89
Reference 90 Appendix-A 99 Appendix-B 101 Appendix-C 103 Appendix-D 104 Appendix-E 105 Appendix-F 107
Appendix-G 110
1.Smith, C.V., D. Di Gregorio and R.M. Talcott (1969). The use of ultrafiltration membranes for activated sludge separation. Proceedings of the 24th Annual Purdue Industrial Waste Conference.
2. Yamamoto, K., M. Hiasa, T. Mahmood and T. Matsuo (1989). Direct solid–liquid separation using hollow fiber membrane in an activated-sludge aeration tank. Water Science and Technology. 21, 43-54.
3.Guo, W.S., S. Vigneswaran, H.H. Ngo and W. Xing (2008). Comparison of membrane bioreactor systems in wastewater treatment. Desalination. 231, 61-70.
4.Meng, F., S.R Chae, A. Drews, M. Kraume, H.S. Shin, F. Yang (2009). Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water research. 43, 1489-1512.
5.Benfenati, E., E. Porazzi, R. Bagnati, F. Former, M.P. Martinex, G. Mariani and R. Fanelli (2003). Organic tracers identification as a convenient strategy in industrial landfills monitoring. Chemosphere. 51, 667-683.
6.Wang, Y., X. Huang and Q. Yuan (2005). Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor. Process Biochemistry. 40, 1733-1739.
7.Ahn, Y.T., S.T. Kang, S.R. Chae, J.L. Lim, S.H. Lee and H.S. Shin (2005). Effect of internal recirculation rate on the high-strength nitrogen wastewater treatment in the combined UBF/MBR system. Water Science and Technology. 51, 241-247.
8.Ahmed, Z., B.R. Lim, J. Cho, K.G. Song, K.P. Kim and K.H. Ahn (2008). Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: Effect of different carbon sources. Water research. 42, 198-210.
9.Chang, I.-S., S.-N. Kim (2005). Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process Biochemistry. 40, 1307-1314.
10.Ngo, H.H. W., Guo and W. Xing (2008). Evaluation of a novel sponge-submerged membrane bioreactor (SSMBR) for sustainable water reclamation. Bioresource Technology. 99, 2429-2435.
11.Guo, W., H.H Ngo, P. Carolyn Gay, W. Xing, A.Y.J. Hu and L. Andrzej (2009). Roles of sponge sizes and membrane types in a single stage sponge-submerged membrane bioreactor for improving nutrient removal from wastewater for reuse. Desalination. 249, 672-676.
12.Renou, S., J.G. Givaudan, S. Poulain, F. Dirassouyan and P. Moulin (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials. 150, 468-493.
13.Chen, P.H. (1996). Assessment of leachate from sanitary landfill: impact of age, rainfall, and treatment, pp. 225-237. Vol. 22, No. 2. Environment International, Dept. of Soil and Water Conservation, National Chung-Hsing, University, Taichung, Taiwan, ROC.
14.Aziz, H.A., S. Alias, M.N. Adlan, F.A.H. Asaari and M.S. Zahari (2007). Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource Technology. 98, 218-220.
15.Chan, G.Y.S., L.M. Chub and M.H. Wong (2002). Effects of leachate recirculation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment. Environmental Pollution. 118, 393-399.
16.Schwarzbauer, J., S. Heim, S. Brinker and R. Littke (2002). Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Research. 36, 2275-2287.
17.Baun, A., L.A. Reitzel, A. Ledin, T.H. Christensen and P.L. Bjerg (2003). Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark). Journal of Contaminant Hydrology. 65, 269-291.
18.Lo, C. and M. Irene (1996). Characteristics and treatment of leachates from domestic landfills. Environment International. 22, 433-442.
19.Kargi, F. and M. Yunus Pamukoglu (2003). Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation. Process Biochemistry. 38, 1413-1420.
20.Kurniawan, T.A., W.H. Lo and G.Y.S. Chan (2006). Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal. 125, 35-57.
21.Wu, J.J., C.C. Wu, H.W. Ma and C.C. Chang (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere. 54, 997-1003.
22.Bila, D.M., A.F. Montalvao, A.C. Silva and M. Dezotti (2005). Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement. Journal of Hazardous Materials. 117, 235-242.
23.Laitinen, N., A. Luonsi and J. Vilen (2006). Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination. 191, 86-91.
24.El-Fadela, M., E. Bou-Zeida, W. Chahineb and B. Alaylic (2002). Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management. 22, 269-282.
25.Chian, E.S.K. (1977). Stability of organic matter in landfill leachates. Water Research. 11, 225-232.
26.Spagni, A. and S. Marsili-Libelli (2009). Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresource Technology. 100, 609-614.
27.You, S.J. and W.Y. Chen (2008). Ammonia oxidizing bacteria in a nitrite-accumulating membrane bioreactor. International Biodeterioration & Biodegradation. 62, 244-249.
28.Fu, Z., F. Yang, F. Zhou and Y. Xue (2009). Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresource Technology. 100, 136-141.
29.Ahn, K.H., K.G. Song, C. Eulsaeng, C. Jinwoo, Y. Hojoon, L. Seockheon and K. Jaeyoung (2003). Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process. Desalination. 157, 345-352.
30.Metcalf and Eddy. 2004. Wastewater Engineering. 4rd ed. McGraw.Hill, U.S.
31.Xu, Z.Y., G.M. Zeng, Z.H. Yang, Y. Xiao, M. Cao, H.S. Sun, L.L. Ji and Y. Chen (2010). Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresource Technology. 101, 79-86.
32.Shen, J., R. He, W. Han, X. Sun, J. Li and L. Wang (2009). Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials. 172, 595-600.
33.Dhamole, P.B., R.R. Nair, S.F. D’Souza and S.S. Lele (2009). Simultaneous removal of carbon and nitrate in an airlift bioreactor. Bioresource Technology. 100, 1082-1086.
34.Kwon, D.Y., S. Vigneswaran, A.G. Fane and R. Ben Aim (2000). Experimental determination of critical flux in cross-flow microfiltration. Separation and Purification Technology. 19, 169-181.
35.Bacchin, P., P. Aimar and V. Sanchez (1996). Influence of surface interaction on transfer during colloid ultrafiltration. Journal of Membrane Science. 115, 49-63.
36.Choi, J.H., S. Dockko, K. Fukushi and K. Yamamoto (2002). A novel application of a submerged nanofiltration membrane bioreactor (NF MBR) for wastewater treatment. Desalination. 146, 413-420.
37.Kumar, M., S. Adham and J. De Carolis (2007). Reverse osmosis integrity monitoring. Desalination. 214, 138-149.
38.Spiegler, K.S. and O. Kedem (1996). Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination. 1, 311-326.
39.Tan, T.W., H.Y. Ng (2008). Influece of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors. Water research. 42, 1122-1132.
40.Jeison, D. and J.B. van Lier (2007). Cake formation and consolidation: Main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBR) treating acidified wastewaters. Separation and Purification Technology. 56, 71-78.
41.Field, R.W., D. WU, J.A. Howell and B.B. Gupta (1995). Critical flux concept for microfiltration fouling. Journal of Membrane Science. 100, 259-272.
42.Belfort, G. and N. Nagata (1985). Fluid mechanics and cross-flow filtration: some thoughts. Desalination. 53, 57-79.
43.Huyskens, C., E. Brauns, E. Van Hoof and H. De Wever (2008). A new method for the evaluation of the reversible and irreversible fouling propensity of MBR mixed liquor. Journal of Membrane Science. 323, 185-192.
44.Rosenberger, S., U. Kruger, R. Witzig, W. Manz, U. Szewzyk and M. Kraume (2002). Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Research. 36, 413-420.
45.Dufresne, R., R.E. Lebrun and H.C. Lavallee (1997). Comparative study on fluxes and performances during papermill wastewater treatment with membrane bioreactor. Chemical Engineering Journal. 75, 95-103.
46.Li, X.Y. and X.M. Wang (2006). Modeling of membrane fouling in a submerged membrane bioreactor. Journal of Membrane Science. 278, 151-161.
47.Choo, K.H. and C.H. Lee (1998). Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Research. 32, 3387-3397.
48.Ueda, T., K. Hata, Y. Kikuoka and O. Seino (1997). Effects of aeration on suction pressure in a submerged membrane bioreactor. Water Research. 31, 489-494.
49.Schoeberl, P., M. Brik, M. Bertoni, R. Braun and W. Fuchs (2005). Optimization of operational parameters for a submerged membrane bioreactor treating dye house wastewater. Separation and Purification Technology. 44, 61-68.
50.Choi, H., K. Zhang, D.D. Dionysiou, D.B. Oerther and G.A. Sorial (2005). Influence of cross-flow velocity on membrane performance during filtration of biological suspension. Journal of Membrane Science. 248, 189-199.
51.Zhang, J.S., C.H. Chuan, J.T. Zhou and A.G. Fane (2006). Effect of sludge retention time on membrane bio-fouling intensity in a submerged membrane bioreactor. Separate Science Technology. 41, 1313-1329.
52.Trussell, R.S., R.P. Merlo, S.W. Hermanowicz and D. Jenkins (2006). The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater. Water Research. 40, 2675-2683.
53.Han, S.S., T.H. Bae, G.G. Jang and T.M. Tak (2005). Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochemistry. 40, 2393-2400.
54.Arabi, S. and G. Nakhla (2008). Impact of protein/carbohydrate ratio in the feed wastewater on the membrane fouling in membrane bioreactors. Journal of Membrane Science. 324, 142-150.
55.Ng, C.A., D. Sun, J. Zhang, H.C. Chua, W. Bing, S. Tay and A. Fane (2005). Strategies to improve the sustainable operation of membrane bioreactors. Proceedings of the International Desalination Association Conference, Singapore.
56.Rosenberger, S., H. Evenblij, S. te Poele, T. Wintgens and C. Laabs (2005). The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research groups. Journal of Membrane Science. 263, 113-126.
57.Lee, W., S. Kang and H. Shin (2003). Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science. 216, 217-227.
58.Bin, C., W. Xiaochang and W. Enrang (2004). Effects of TMP, MLSS concentration and intermittent membrane permeation on a hybrid submerged MBR fouling. Proceedings of the Water Environment-Membrane Technology Conference, Seoul, Korea.
59.Wicaksana, F., A.G. Fane and V. Chen (2006). Fibre movement induced by bubbling using submerged hollow fibre membranes. Journal of Membrane Science. 271, 186-195.
60.Germain, E. and T. Stephenson (2005). Biomass characteristics, aeration and oxygen transfer in membrane bioreactors: their interrelations explained by a review of aerobic biological processes. Reviews in Environmental Science and Biotechnology. 4, 223-233.
61.Cho, J., K.G. Song and K.H. Ahn (2005). The activated sludge and microbial substances influences on membrane fouling in submerged membrane bioreactor: unstirred batch cell test. Desalination. 183, 425-429.
62.Boerlage, S.F.E., M.D. Kennedy, M.R. Dickson, D.E.Y. El-Hodali and J.C. Schippers (2002). The modified fouling index using ultrafiltration membranes (MFI-UF): characterisation, filtration mechanisms and proposed reference membrane. Journal of Membrane Science. 197, 1-21.
63.Tarnacki, K., S. Lyko, T. Wintgens, T. Melin and F.Natau (2005). Impact of extra-cellular polymeric substances on the filterability of activated sludge in membrane bioreactors for landfill leach ate treatment. Desalination. 179, 181-190.
64.Liu, Y.J., D.D. Sun (2010). Comparison of membrane fouling in dead-end microfiltration of denitrifying granular sludge suspension and its supernatant. Journal of Membrane Science. 352, 100-106.
65.Drews, A., M. Vocks, V. Iversen, B. Lesjean, M Kraume (2006). Influence of unsteady membrane bioreactor operation on EPS formation and filtration resistance. Desalination. 192, 1-9.
66.Long D. N., S. Hawkes (2007). Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size. Separation and Purification Technology. 57, 176-184.
67.Wang Z., Z. Wu, X. Yin, L. Tian (2008). Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. Journal of membrane science. 325, 238-244.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 26. 陳世英,〈證券商辦理財富管理業務架構之發展與展望〉,《證券櫃檯》,2008年4 月。
2. 18. 林孟皇,<金融專庭與法官法定原則>,《法令月刊》,第60卷第4期,2008年4月。
3. 48. 謝學如,〈日本金融大改革及對我國之啟示〉,《經濟研究》,第9期,2009年03月。
4. 37. 溫祖德,〈美國檢察裁量權與經濟犯罪—從安龍等案件談貣〉,《證交資料》,532期,2006年08月15日。
5. 24. 陳茵琦,〈從「證券交易法」到「金融商品交易法」-淺談日本新金融商品交易之規範〉,《證交資料》,第546期,2007年10月。
6. 13. 林仁光,〈論證券業對客戶資訊揭露之規範──以風險預告與客戶投資適合性之判斷法則為核心〉,《月旦法學雜誌》,第126 期,2005 年11月。
7. 27. 陳春山,〈投資人保護之民事問題-案例及架構分析〉,《證券櫃檯》,第96期,2004年6月。
8. 33. 黃帥升、陳肇鴻,〈從瑞士銀行(UBS) 標售利率型證券案談財富管理之投資人保護〉,《萬國法律》,第163期,2009年02月。
9. 41. 蔡明宏,〈論強化我國金融交易糾紛調處機制〉,《存款保險資訊季刊》,第 21卷第2 期,2008 年6 月。
10. 37. 溫祖德,〈美國檢察裁量權與經濟犯罪—從安龍等案件談貣〉,《證交資料》,532期,2006年08月15日。
11. 44. 鄧淑芬,〈「資訊整合帄台-結構型商品」簡介〉,《證券櫃檯》,第120 期,2006年6 月。
12. 43. 蔡朝安、謝文欽,〈詴論我國金融服務法規範之整合與革新〉,《證券暨期貨月刊》,第24卷第8期,2006年8月。
13. 43. 蔡朝安、謝文欽,〈詴論我國金融服務法規範之整合與革新〉,《證券暨期貨月刊》,第24卷第8期,2006年8月。
14. 42. 蔡朝安、謝文欽,〈金融服務法制整合之發展趨勢〉,《全國律師》,第83期,2006年4月。
15. 30. 張晏慈,〈從金融商品販賣到金融商品交易法日本近期金融法制發展介紹〉,《證券暨期貨月刊》,第24卷第10期,2006年10月。