跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊佑
研究生(外文):Chun-Yu Lee
論文名稱:郊區秋季之大氣氣膠無機鹽類及羧酸之特性及其粒徑變異研究
論文名稱(外文):Chemical Characteristics and Size Distributions of Inorganic Salts and Carboxylic Acids in Suburban Aerosols in Autumn
指導教授:蔡瀛逸蔡瀛逸引用關係
指導教授(外文):Ying-I Tsai
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:114
中文關鍵詞:無機鹽類羧酸粒徑秋季大氣氣膠郊區中秋節
外文關鍵詞:Chemical CharacteristicsSize DistributionsInorganic SaltsCarboxylic AcidsSuburbanAerosolMid-Autumn Festival
相關次數:
  • 被引用被引用:12
  • 點閱點閱:537
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
夲研究探討台南郊區中秋節之前、中秋節慶、中秋節之後、高污染事件及秋季一般空氣品質時期之大氣氣膠化學組成中無機鹽類及羧酸(有機酸)之特性及其生成來源及粒徑分佈。
中秋節之前、中秋節之後、高污染事件大氣氣狀物之全日平均濃度高低依序為NH3>SO2>HNO2>HCl>HNO3>oxalic acid,而SO2濃度在中秋節慶高於NH3。秋季各時期HNO2之夜間濃度大於日間濃度,而HNO3日間濃度高於夜間,顯示日間大氣之HNO2經光化反應轉化生成HNO3。
秋季各時期之malonic acid/succninc acid比值為0.2~1.5,顯示台南郊區採集的大氣氣膠有機酸部份來自尚未轉化之交通排放,另外來自光化反應的貢獻。又oxalic/sulfate之日夜比值,中秋節之前、中秋節慶及中秋節之後的趨勢均為日間大於夜間,顯示此三時期日間氣膠中oxalic acid生成潛勢高於夜間。
台南郊區之NH4+及SO42-主要粒徑均分布於condensation mode之0.19 um及droplet mode之0.54 um,且中秋節慶又以droplet mode之波峰較其他時期顯著,且此時氣膠K+之增量顯然高於其他時期,顯示中秋節除了有節慶烤肉燃燒所產生的污染物排放之外,亦有明顯的光化產物存在,粒徑濃度波峰集中在droplet mode。而Na+及Cl-之粒徑均於coarse mode (6.2 um)有明顯濃度波峰,突顯氣膠中會有來自海洋飛沫的貢獻。
由粒徑2.5 um以下之氣膠Na+與Cl-物種於中秋節之前、中秋節慶、中秋節之後及高污染事件之粒徑濃度相關係數分別為0.49、0.54、0.81及0.95,顯示高污染事件細小海洋飛沫粒徑的形成,具體貢獻在氣膠組成中;而由Ca2+與Mg2+之粒徑濃度相關係數分別高達0.93、0.86、0.93及0.98,提供塵土微粒明確飛散在大氣中的證據。
台南郊區之succinic acid於coarse mode與Na+及Cl-的高度相關趨勢顯示粗粒succinic acid源自海洋飛沫之貢獻,而中秋時期之氣膠glutaric acid粒徑濃度在0.19 um分別較中秋節之前與中秋節之後高出11.3倍及7.3倍,而中秋時期氣膠oxalic acid分別分別較中秋節之前與中秋節之後高出3.4倍及5.1倍,顯示中秋節慶大氣氣膠存在高量的glutaric acid與oxalic acid。而高污染事件glutaric acid主要粒徑分布與NH4+及K+於droplet mode具相同粒徑濃度趨勢,顯示高污染事件受到農廢燃燒排放之影響。
In this research, the temporal chemical compositions, characteristics, formation, sources, and particle distribution of inorganic salts and carboxylic acids (organic acid) of aerosols in Tainan suburban in southern Taiwan were studied during before Mid-Autumn Festival period, Mid-Autumn Festival period, after Mid-Autumn Festival period, autumn clean air quality period, and the PM episode.
The concentration of gaseous pollutants in the atmosphere during before Mid-Autumn Festival period, after Mid-Autumn Festival period and PM episode in the Tainan suburban region is determined to be in the following order NH3> SO2> HNO2> HCl> HNO3> oxalic acid. However, during the Mid-Autumn Festival period, concentration of SO2 is higher than NH3 concentration. Further during all autumn period, the daytime concentration of HNO2 is relatively higher, while during the nighttime concentration of HNO3 is relatively higher, indicating that during the daytime HNO2 is converted to HNO3 by photochemical reactions in atmosphere.
During the all autumn period, the ratio of malonic acid / succinic acid is in the range 0.2 to 1.5, indicating that Tainan suburban aerosol collected were part of the transformation of the traffic emissions via photochemical reaction. During the before Mid-Autumn Festival period, Mid-Autumn Festival period and after Mid-Autumn Festival period the oxalic / sulfate ratio, the daytime is always greater than the nighttime, indicating that during the daytime oxalic acid aerosol formation potential is higher than nighttime.
In Tainan suburban, NH4+ and SO42- were the major particle size distribution in the condensation mode (0.19 µm) and droplet mode (0.54 µm), respectively. The Mid-Autumn Festival celebration droplet mode of the peak is significantly higher than other periods, while concentration of K+ is observed to also increase during this period too, indicating that during the Mid-Autumn festival BBQ, in addition to the pollutants generated by combustion emissions, contributed to the distinct photochemical product in the particle concentration peaks found to be concentrated in the droplet mode. The particle size of Na+ and Cl- are in the coarse mode (6.2 µm), demonstrating the sea spray contribution to atmospheric aerosol.
Moreover, for the particle size below 2.5 um, the correlation coefficient of Na + and Cl- species is 0.49 during the before the Mid-Autumn Festival celebration, 0.54 during the Mid-Autumn Festival, 0.81 during the After Mid-Autumn Festival, while it is 0.95 during the PM episode, an indication of the extent of contribution of sea spray to aerosol pollution particle size. Further, the Ca2 + and Mg2 + high correlation coefficient contribution to aerosol composition concentration in these size were 0.93, 0.86, 0.93 and 0.98, for the before, during, after and PM episode, respectively, providing a clear evidence of dust particles in the atmosphere.
Also, succinic acid shows a high related trend with Na + and Cl- in the coarse mode, indicating that source of succinic acid were also from the contribution of sea spray. During the Mid-Autumn period, aerosol concentration of glutaric acid in the particle size 0.19 ?n?慆 is 11.3 times and 7.3 times higher than periods before Mid-Autumn Festival and After Mid-Autumn Festival, respectively. In addition, oxalic acid during Mid-Autumn Festival period in the aerosol is also higher by 3.4 times and 5.1 times during the periods before Mid-Autumn Festival and after Mid-Autumn Festival, respectively, indicating that during Mid-Autumn Festival celebration, the aerosol shows high amounts of glutaric acid and oxalic acid. The high contamination of glutaric acid for the same particle size distribution and also of NH4 + and K + in the droplet mode size showed the high contamination impact of agricultural waste combustion emissions.
目錄

摘要 Ⅰ
Abstract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1大氣氣膠微粒形成機制 3
2-2 大氣氣膠雲凝結核之特性 5
2-3大氣氣膠無機鹽類及羧酸之來源及組成 6
2-3-1大氣氣膠無機鹽類之來源及組成 6
2-3-2大氣氣膠羧酸之生成及來源 7
2-4大氣氣膠無機鹽類及羧酸之粒徑分布 11
2-4-1 大氣氣膠無機鹽類之粒徑分佈 11
2-4-2 大氣氣膠羧酸之粒徑分佈 13
第三章 研究設備與方法 17
3-1 採樣地點及採樣時間 17
3-2 採樣方法與設備 20
3-3採樣之前後調理 25
3-4分析前處理 28
3-5樣品分析 29
3-5-1大氣氣膠水溶性陰、陽離子及草酸之分析 29
3-5-2羧酸分析 30
3-6樣品分析之品保品管 33
第四章 台南郊區秋季時期空氣品質狀態之大氣氣膠氣狀物之探討 35
4-1不同時期之大氣氣狀物變異比較 35
4-2各地之氣狀物濃度比較 42
第五章 台南郊區秋季時期大氣氣膠之組成變異 47
5-1中秋節之前PM2.5微粒之無機鹽類及羧酸日夜變異 47
5-2中秋節慶PM2.5微粒之無機鹽類及羧酸日夜變異 48
5-3中秋節之後PM2.5微粒之無機鹽類及羧酸日夜變異 51
5-4高污染事件PM2.5微粒之無機鹽類及羧酸日夜變異 52
5-5一般空氣品質時期PM2.5微粒之無機鹽類及羧酸日夜變異 54
5-6大氣氣膠無機鹽及羧酸全日平均成份比例之比較 56
5-7大氣氣膠之指標性光化反應 62
5-8不同時期對一般空氣品質時期之大氣氣膠物種比值 63
第六章 台南郊區秋季不同時期大氣氣膠組成份之粒徑分布變異研究 68
6-1台南郊區秋季不同時期大氣氣膠粒徑分布變異研究 68
6-1-1大氣氣膠無機鹽類及質量濃度之粒徑分布 68
6-1-2大氣氣膠羧酸類之粒徑分布 74
6-2 台南郊區秋季時期大氣氣膠組成之粒徑分類平均濃度百分比分布變異 77
6-2-1大氣氣膠無機鹽類粒徑分類平均濃度百分比 77
6-2-2大氣氣膠羧酸類粒徑分類平均濃度百分比 80
6-3 台南郊區不同時期之大氣氣膠質量中位數粒徑分佈 87
第七章 結論與建議 89
7-1 結論 89
7-2 建議 90
參考文獻 91

圖目錄
Fig. 2.1 大氣中懸浮微粒之組成及來源 (Whitby and Sverdrup, 1980) 4
Fig. 2.2 有機氣膠在大氣中之轉換 (Sun and Ariya, 2006) 10
Fig. 3.1 台南郊區採樣位置圖(位於嘉南藥理科技大學食品大樓頂樓) 18
Fig. 3.2 多功能固/氣分離採樣器(URG versatile air pollutant sample,VAPS) 23
Fig. 3.3 微孔均勻沉積衝擊器及奈米均勻沉積衝擊器(MSP, Micro-Orifice Uniform Deposit Impactor, MOUDITM-110 and nano- MOUDITM-115) 24
Fig. 3.4 VAPS與MOUDI採樣分析流程圖 27
Fig. 3.5 羧酸分析儀Dionex DX-600 31
Fig. 4.1 台南郊區秋季時期之大氣氣狀物濃度比較 36
Fig. 4.2 台南郊區秋季時期大氣SO2日夜濃度比較 37
Fig. 4.3 台南郊區秋季時期大氣NH3日夜濃度比較 38
Fig. 4.4 台南郊區秋季大氣HCl日夜濃度比較 39
Fig. 4.5 台南郊區秋季時期大氣HNO2與HNO3日夜濃度比較 40
Fig. 4.6 台南郊區秋季大氣oxalic acid日夜濃度比較 41
Fig. 5.1 中秋之前PM2.5氣膠之無機鹽類及羧酸日夜濃度 48
Fig. 5.2 中秋節慶PM2.5氣膠之無機鹽類及羧酸日夜濃度 51
Fig. 5.3 中秋之後PM2.5氣膠之無機鹽類及羧酸日夜濃度 52
Fig. 5.4 高污染事件PM2.5氣膠之無機鹽類及羧酸日夜濃度 54
Fig. 5.5 一般空氣品質時期PM2.5氣膠之無機鹽類及羧酸日夜濃度 55
Fig. 5.6 中秋節之前期大氣PM2.5氣膠中各成份所佔百分比 59
Fig. 5.7 中秋節慶大氣PM2.5氣膠中各成份所佔百分比 60
Fig. 5.8 中秋節之後大氣PM2.5氣膠中各成份所佔百分比 60
Fig. 5.9 高污染事件大氣PM2.5氣膠中各成份所佔百分比 61
Fig. 5.10 一般空氣品質時期大氣PM2.5氣膠中各成份所佔百分比 61
Fig. 5.11 氣膠malonic/succinic及oxalic/sulfate日夜質量比之比較 63
Fig. 5.12 各時期對一般空氣品質時期大氣氣膠無機鹽類之比值特徵 66
Fig. 5.13 大氣氣膠不同時期與一般空氣品質時期比較之無機鹽類比值特徵 66
Fig. 5.14 各時期對一般空氣品質時期羧酸之指標性特徵 67
Fig. 5.15 大氣氣膠不同時期與一般空氣品質時期比較之羧酸比值特徵 67
Fig. 6.1 不同時期大氣氣膠質量濃度之粒徑分布比較 72
Fig. 6.2 不同時期大氣氣膠無機鹽類之粒徑分布比較 73
Fig. 6.3 不同時期大氣氣膠succinic acid、malonic acid、glutaric acid、glutaric acid之粒徑分布比較 77
Fig. 6.4 不同時期大氣氣膠無機鹽類之粒徑分類濃度百分比 82
Fig. 6.5 不同時期大氣氣膠羧酸類之粒徑分類濃度百分比 83
Fig. 6.5 (續) 不同時期大氣氣膠羧酸類之粒徑分類濃度百分比 84

表目錄
Table 3.1 VAPS及MOUDI採樣品組數表 19
Table 3.2 MOUDI及nano-MOUDI採樣器各階衝擊板之截取粒徑 22
Table 3.3 離子層析儀Dionex DX-600梯度沖堤配比表 31
Table 3.4 十一種羧酸之名稱及化學結構式 32
Table 3.5 氣膠無機鹽及羧酸之方法偵測極限 34
Table 4.1 各地不同區域之氣狀物濃度比較 45
Table 4.1 (續) 各地不同區域之氣狀物濃度比較 46
Table 6.1 不同時期無機鹽類之粒徑分布百分比 85
Table 6.2 不同時期羧酸之粒徑分布百分比 86
Table 6.3台南郊區秋季質量中位數粒徑之質量中位數粒徑分布 88
參考文獻
Acker, K., Mertes, S., Möller, D., Wieprecht, W., Auel, R., Kalaβ, 2002. Case study of cloud physical and chemical processes. Atmospheric Research 64, 41-51.
Anlauf, K., Li, S.M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., Wiebe, A., 2006. Ionic composition and size characteristics of particles in the lower Fraser Vellay: Pacific 2001 field study. Atmospheric Environment 40, 2662-2675.
Attri, A.K., Kumar, U., Jain, V.K., 2001. Microclimate formation of ozone by fireworks. Nature 411, 1015.
Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L., 2003. Measurement of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environmenet 37, 2825-2835.
Bai, H., Lu, C., Chang, K.-F., Fang, G.-C., 2003. Sources of sampling error for field measurement of nitric acid gas by a denuder system. Atmospheric Environment 37, 941-947.
Bardouki, H., Liakakou, J., Economou, C., Sciare, J., Smolík, J., Ždímal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., Mihalopoulos, N., 2003. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment 37, 195-208.
Berico, M., Luciani, A., Formignani, M., 1997. Atmospheric aerosol in an urban area-measurements of TSP and PM10 standards and pulomonary deposition assessment. Atmospheric Environment 31, 3659-3665.
Bierbach, A., Barnes, I., Becker, K.H., Wiesen, E., 1994. Atmospheric chemistry of unsaturated carbonyls: Butenedial, 4-oxo-2-pentenal, 3-hexene-2,5-dione, maleic anhydride, 3H-furan-2-one, and 5-methyl-3H-furan-2one. Environment Science & Technology 28, 715-729.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. Technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109, D14203.
Brook, J.R., Dann, T.F., Burnett, R.T., 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations Journal of the Air and Waste Management Association 47, 2-19.
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997. Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment 31, 2061-2081.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmospheric Environment 30, 4233-4249.
Cheng, M.T., Tsai, Y.I., 2000. Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. The Science of the Total Environment 263, 101-114.
Cruz, C.N., Pandis, S.N., 1997. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment 33, 2661-2668.
Cruz, C.N., Pandis, S.N., 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. Journal of Geophysical Research 103, 13,111-13,123.
Day, D.E., Malm, W.C., Kreidenweis, S.M., 1997. Seasonal variations in aerosol composition and acidity at Shenandoah and Great Smoky Mountains national parks. Journal of the Air and Waste Management Association 47, 411-418.
Dockery, D.W., Pope, C.A., 1994. Acute respiratory effects of particulate air Pollution. Annual Reviews of Public Health 15, 107-132.
Drewnick, F., Hings, S.S., Cutius, J., Eerdekens, G., Williams, J., 2006. Measurement of fine particulate matter and gas-phase species during the new year’s fireworks 2005 in Mainz, Germany. Atmospheric Environment 40, 4316-4327.
Dumdei, B.E., Kenny, D.V., Shepson, P.B., Kleindienst, T.E., Nero, C.M., Culpitt, L.T., Claxton, L.D., 1988. MS/MS analysis of the products of toluene photooxidation and measurement of their mutagenic activity. Environment Science and Technology 22, 1493-1498.
Dutcher, D.D., Perry, K.D., Cahill, T.A., Copeland, S.A., 1999. Effects of indoor pyrotechnic displays on the air quality in the Houston Astrodome. Journal of Air & Waste Management Association 49, 156-160.
Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 410, 257-259.
Grosjean, D., 1989. Organic acids in southern California air: ambient concentrations, mobile source emissions, in-situ formation and removal processes. Environmental Science and Technology 23, 1504-1506.
Hartmann, W.R., Santana, M., Hermoso, M., Andreae, M.O., Sanhueza, E., 1991. Diurnal cycles of formic and acetic acids in the northern part of Guyana shield, Venezuela. Journal of Atmospheric Chemistry 13, 63-72
Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid and C2-C3 α-dicarbonyls. Environmental Science and Technology 21, 52-63.
Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030-3040.
Hsieh, L.Y.,Kuo, S.C., Chen, C.L., Tsai, Y.I., 2009.Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmospheric Environment 43, 4396-4406.
Hsieh, L.Y., Chen, C.L., Wan, M.-W., Tsai, Y.I., 2008. Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmospheric Environment 42, 6836-6850.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I., 2007. Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol. Atmospheric Environment 41, 6648-6661.
Hudson, J.G., 1992. Cloud condensation nuclei. Journal of Applied Meteorology 32, 596-607.
Ikegami, M., Okada, K., Zaizen, Y., Makino, Y., Jensen, J.B., Gras, J.L., Harjanto, H., 2001. Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires. Atmospheric Environment 35, 4237-4243.
John, W., Wall, S.M., Ondo, J.L., Winklmayr, W., 1990. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment 24, 2349-2359.
Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.
Kawamura, K., Sakaguchi, F., 1999. Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509.
Kawamura, K., Kasukabe, H., Barrie, L.A., 1996a. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: One year of observations. Atmospheric Environment 30, 1709-1722.
Kawamura, K., Steinberg, S., Kaplan, I.R., 1996b. Concentrations of monocarboxylic and dicarboxylic acids and aldehydes in southern California wet precipitations: Comparison of urban and nonurban samples and compositional changes during scavenging. Atmospheric Environment 30, 1035-1052.
Kawamura, K., Sempere, R., Imai, Y., Fujii, Y., Hayashi, M., 1996c. Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. Journal of Geophysical Research 101, 18721-18728.
Kawamura, K., Kasukabe, H., Yasui, O., Barrie, L.A., 1995. Production of dicarboxylic acids in the arctic atmosphere at polar sunrise. Geophysical Research Letters 22, 1253-1256.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2235.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science and Technology 21, 105-110.
Kerminen, V.M., 2001. Relative roles of secondary sulfate and organics in atmospheric Cloud condensation nuclei production. Journal of Geophysical Research 106, 17321-17333.
Kerminen, V.M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J., 2000. Low-molecular-weight dicarboxylic acid in an urban and rural atmosphere. Journal of Aerosol Science 31, 349-362.
Kerminen, V.M., Teinila, K., Hillamo, R., Pakkanen, T., 1998. Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science 29, 929-942.
Kleindienst, T.E., Smith, D.F., Li, W., Edney, E.O., Driscoll, D.J., Speer, R.E., Weathers, W.S., 1999. Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol. Atmospheric Environment 33, 3669-3681.
Kohler, H., 1936. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society 32, 1152-1161.
Kulshrestha, U.C., Nageswara Rao, T., Azhaguvel, S., Kulshrestha, M.J., 2004. Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment 38, 4421-4425.
Lee, C.T., Hsu, W.C., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837.
Lee, J.H., Kim, Y.P., Moon, K.C., Kim, H,K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635-643.
Lee, W.H., Lacobellis, S.F., Somerville, R.C.J., 1997. Cloud radiation forcings and feedbacks: general circulation model tests and observational validation. Journal of Climate 10, 2479-2496.
Liu, D.Y., Rutherford, D., Kinsey, M., Prather, K.A., 1997. Realtime monitoring of pyrotechnically derived aerosol particles in the troposphere. Analytical Chemistry 69, 1808-1814.
Lohmann, U., Lesins, G., 2002. Stronger constraints on the anthropogenic indirect aerosol effect. Science 298, 1012-1016.
Lonati, G., Giugliano, M., Butelli, P., Romele, L., Tardivo, R., 2005. Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment 39, 1925-1934.
Lundgren, D.A. Burton, R.M.M., 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148.
Matsumoto, K., Tanaka, H., Nagao, I., Ishizaka, Y., 1997. Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere. Geophysical Research Letters 24, 655-658.
Matsumoto, M., Okita, T., 1998. Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara, Japan. Atmospheric Environment 32, 1419-1425.
Mayer, H., 1999. Air pollution in cities. Atmospheric Environment 33, 4029-4037.
Moya, M., Castro, T., Zepeda, M., Baez, A., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isopotic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104.
Pakkanen, T. A., 1996. Study of formation of coarse particle nature aerosol. Atmospheric Environment 30(14), 2475-2482.
Peng, C., Chan, C.K., 2001. The water cycles of water soluble organic salts of atmospheric importance. Atmospheric Environment 35, 1183-1192.
Peng, C., Chan, M.N., Chan, C.K., 2001. The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions. Environmental Science and Techonolog 35, 4495-4501.
Perry, K.D., 1999. Effects of outdoor pyrotechnic displays on the regional air quality of Western Washington State. Journal of Air and Waste Management Association 49, 146-155.
Possanzini, M., Santis, F., Palo, V., 1999. Measurements of nitric acid and ammonium salts in lower Bavaria. Atmospheric Environment 33, 3597-3602.
Pope III, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: Lines that connect. Journal of Air and Waste Management Association 56, 709-742.
Ravindra, K., Mittal, A.K., Grieken, R.V., 2001. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review. Reviews on Enviromental Health 16, 169-189.
Ravindra, K., Mor, S., Kaushik, C.P., 2003. Short-term variation in air quality associated with fireworks events: a case study. Journal of Environmental Monitoring 5, 260-264.
Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G., 2002. Atmospheric concentrations of ammnonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36, 1661-1674.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation. Atmospheric Environment 27, 1309-1330.
Röhrl, A., Lammel, G., 2001. Low-molecular weight dicarboxylic acids and glyoxylic acid: Seasonal and air mass characteristics. Environmental Science and Technology 35, 95-101.
Saxena, P., Hildemann, L.M., McMurry. P.H., Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research 100, 18755-18770.
Sempere, R., Kawamura, K., 1996. Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from the western Pacific. Atmospheric Environment 30, 1609-1619.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics. From Air Pollution to Climate Change. Wiley, New York 1326pp.
Shulman, M.L., Jacobson, M.C., Charlson, R.J., Synovec, R,E., Young, T.E., 1996. Dissolution behaviour and surface tension effects of organic compounds in nucleating cloud droplets. Geophysical Research Letters 23, 277-280.
Sjödin, A. , Ferm, M. , 1985. Measurement of nitrous acid in urban ares. Atmospheric Environment 19, 985-992.
Spengler, J.D., Kourtrakis, P., Dockery, D.W., Raizenne, M., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: Air pollution exposures. Environmental Health Perspective 104, 492-499.
Spengler, J.D., Brauer, M., Koutrakis, P., 1990. Acid air and health. Environmental Science and Technology 24, 946-956.
Stephens, G.L., Tsay, S.C., Stackouse, P.W., Flat, P.J., 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of Atmospheric Science 47, 1742-1753.
Sun, J., Ariya, P.A., 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment 40, 795-820.
Talbot, R.W., Andreae,M.O., Berresheim,H., Jacob, D.J., Beecher, K.M., 1990. Sources and sinks of formic, acetic and pyruvic acids overcentral Amazonia: 2. Wet deposition. Journal of Geophysical Research 95, 16799-16811.
Talbot, R.W., Beecher, K.M., Harris, R.C., Cofer, R.W., 1988. Atmospheric geochemistry of formic and acetic acids at a midlatitude temperate site. Journal of Geophysical Research 93,1638-1652.
Tsai, Y.I., Chen, C.L., 2006. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Tsai, Y,I., Kuo, S.C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
Turnbull, A,B., Harrison, R.M., 2000. Majou component contributions to PM10 composition in the UK atmosphere. Atmospheric Environment 34, 3129-3137.
Twomey, S., 1997. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences 34, 1149-1152.
Vecchi, R., Bernardoni, V., Cricchioa, D., D’Alessandroa, A., Fermob, P., Lucarellic, F., Navad, S., Piazzalungab, A., Vallia, G., 2008. The impact of fireworks on airborne particles. Atmospheric Environment 42, 1121-1132.
Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density 38, 1235-1246.
Wang, Y., Zhuang, G., Xu, C., An, Z., 2007. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment 41, 417-431.
Wang, Y., Zhuang, G., Chen, S., An, Z., Zheng, A., 2007. Characteristics and sources of formic, acetic and oxalic acidsin PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Reseach 84, 169-181.
Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., 1994. Chemical mass balance source apportionment of PM10 during the Southern California air quality study. Aerosol Science and Technology 21, 1-36.
Whitby, K.T., Cantrell, B., 1976. Fine Particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers.
Wu, P.M., Okada, K., 1994. Nature of coarse nitrate particles in the atmosphere a single particle approach. Atmospheric Environment 28, 2053-2060.
Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment 34, 1641-1653.
Yao, X., Chan, C.K., Fang, M., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
Yao, X., Chan, C.K., Fang, M., Lau, A.P.S., Hu, M., 2003. Size distributions and formation of ionic species in atmospheric particulate pollutans in Beijing, China: 2-dicarboxylic acids. Atmospheric Environment 37, 3001-3007.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002a. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yao, X., Fang, M., Chan, C.K., 2002b. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099-2107.
Yu, S.C., 2000. Role of organic acids formic, acetic, pyruvic and oxalic in the formation of cloud condensationnuclei CCN: A review. Atmospheric Research 53, 185-217.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-853.
黃香儒,「秋冬季節之大氣氣膠無機鹽類及二元酸之組成及粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2005。
翁子翔,「背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2006。
馬玉芊,「低海拔偏遠地區與平地郊區之大氣氣膠二元有機酸之化學特性及其粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2008。
蔡瀛逸、郭素卿、黃香儒,「大氣二元有機酸之組成粒徑分布與時變異」,第十一屆中華民國國際氣膠科技研討會論文集,第156-161頁,台中,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top