跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Auranee Chotruksa
研究生(外文):Auranee Chotruksa
論文名稱:泰國清邁地區乾燥季節大氣氣膠之羧酸及脫水醣類特性研究
論文名稱(外文):Characterization of carboxylic acids and anhydrosugars in dry season ambient aerosol in Chiang Mai Basin, Thailand
指導教授:蔡瀛逸蔡瀛逸引用關係
指導教授(外文):Ying-I Tsai
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:102
中文關鍵詞:羧酸生質燃燒草酸脫水內醚醣清邁醋甲酸比醣醇類丙二酸丁二酸比
外文關鍵詞:M/S ratioA/F ratioSugar alcoholsLevoglucosanChiang MaiBiomass burningCarboxylic acidsOxalic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:504
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
在2010年二月到四月泰國清邁地區的乾燥季節期間,在三個不同的地點進行兩時期密集採樣,採集PM10氣膠微粒,探討氣膠水溶性無機鹽類,羧酸,醣醇類的質量濃度特性差異與可能的污染來源。結果發現清邁市區PM10氣膠的有機及無機物種濃度總是比郊區及山林地區的濃度為高,顯示市區有較多的污染傳入。醋酸是最豐富的單元酸,再者為甲酸,草酸是兩時期最主要的二元羧酸。在PM10事件日,PM10中羧酸的質量濃度比非事件日時高。在白天時期,因化石燃料的排放和生質燃燒過程的污染物,在大氣光化環境下,形成羧酸微粒。脫水內醚醣(Levoglucosan,Levo)和阿拉伯醇(arabitol)是醣醇類的主要成分,兩者在山林採樣點的PM10微粒中佔 0.53-1.48%,顯示山林間存在生質燃燒。Levoglucosan在PM10事件日的夜晚都發現高質量濃度,顯示生質燃燒大部分發生在夜晚。此外,氣膠中醋酸和甲酸的比值(A/F)大於1,同時顯示生質燃燒或車輛排放出的廢氣是主要的污染來源。而在兩時期,malonic/succinic 的比值介於0.94-1.72,顯示清邁地區大氣環境同時充斥著交通原生污染源及二次光化產物的影響。由兩時期的物種指標:K/Levo= 0.78-2.68, Levo/Mannosan= 5.73-36.2的比例關係發現有明確的生質燃燒特徵,其中脫水內醚糖是視為清邁地區周圍的山林燃燒最具指標意義的氣膠有機物種。研究歸納發現清邁地區大氣污染來源最主要來自光化產生的二次氣膠和生質燃燒中硬木和軟木的樹葉/皮燃燒所貢獻。
PM10 aerosol was collected during two periods between February and April of dry season 2010 at urban, suburban and mountain sites in Chiang Mai basin, Thailand. Characteristics and provenance of water-soluble inorganic species, carboxylic acids, anhydrosugars and sugar alcohols in PM10 were investigated. Concentrations of inorganic and organic species in PM10 aerosol at urban site are always higher than at suburban and mountain sites, indicating that more sources were transported to urban area. Acetic acid was the most abundant monocarboxylic acids, followed by formic acid. Oxalic acid was the dominant dicarboxylic acid species during both periods. Concentration of carboxylic acids during the PM10 episode was higher than that during non-episodic pollution. Carboxylic acids with a peak at daytime during the PM10 episode indicate that carboxylic acids are formed by photochemical reaction and/or are emitted directly by fossil fuels and biomass burning processes. Levoglucosan (Levo) and arabitol were the most dominant anhydrosugar and sugar alcohol, respectively, the ratios of levoglucosan to PM10 in forest fire are 0.53-1.48% by PM10 mass. High concentration of levoglucosan was found at nighttime in both periods, indicating that biomass burning contributed during nighttime. Mass ratio of acetic to formic acids (A/F) > 1 is often used to demonstrate the primary source by wood burning or vehicular emission. This study showed that the contribution of primary sources caused from biomass burning. Moreover, the ratios of M/S in the range of 0.94-1.72 during both periods indicated there exists simultaneously the impaction of primary traffic-related emissions and secondary photochemical pollution on Chiang Mai ambient environment. The discriminator ratios of biomass burning reported here are 0.78-2.68 of K/Levo, 5.73-36.2 of Levo/Mannosan. Levoglucosan was found to be the most useful marker for biomass burning emitted from forest fire event in the mountain around Chiang Mai basin. The most significant contribution to PM10 in Chiang Mai basin was the photochemical formation of secondary aerosols and primary source from biomass burning contributed by hardwood and softwood of leaves/bark trees.
CONTENTS

ABSTRACT I
CHINESE ABSTRACT II
ACKNOWLEDGEMENTS III
CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES X

CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Purpose 3

CHAPTER 2 LITERATURE REVIEW 4
2.1 Aerosol formation mechanism 4
2.2 Carboxylic acids in atmospheric aerosols 5
2.3 Sources of carboxylic acids 8
2.3.1 Direct emissions from anthropogenic sources 8
2.3.1.1 Biomass combustion 8
2.3.1.2 Motor exhaust emissions 9
2.3.2 Emissions from biogenic sources 10
2.3.3 Photochemical production of carboxylic acids
from precursors 11
2.4 Anhydrosugars and sugar alcohols 19

CHAPTER 3 EXPERIMENTAL 26
3.1 Sampling 26
3.2 Sampling handing 29
3.3 Chemical analysis and quality assurance 29
3.4 Other data 35

CHAPTER 4 RESULTS AND DISCUSSION 37
4.1 Meteorological conditions 37
4.2 Mass concentration of PM10 aerosols 39
4.3 Aerosol composition of PM10 during non episodic pollution
and PM10 episode periods 42
4.4 Concentration of chemical species in daytime
and nighttime during non episodic pollution period
and PM10 episode 47
4.5 Contribution of chemical species 53
4.6 Composition of mass ratios with other studies 63
4.6.1 Carboxylic acids 63
4.6.2 Anhydrosugars 65
4.7 Relationships among chemical species in daily PM10
and gaseous pollutants 67
4.8 Comparison with literature data 69

CHAPTER 5 CONCLUSIONS 74
5.1 Conclusion 74
5.2 Suggestions for the future work 77
REFERENCE 78
LIST OF TABLES

Table 2.1 Saccharides commonly found in atmospheric
aerosol and their sources (Caseiro et al., 2007) 25
Table 3.1 Ion Chromatography Dionex DX-600
gradient elution ratio 31
Table 3.2 The names and chemical structures of carboxylic acids 33
Table 3.3 The names and chemical structures of anhydrosugars
and sugar alcohols 34
Table 3.4 Method detection limits (MDLs) of four chemical
compound groups measured using IC systems 35
Table 4.1 Meteorological and related air pollution information
during the period of study at the suburban site 38
Table 4.2 Mean (?bSD) chemical composition of PM10 aerosol
during non-episode pollution period and
PM10 episode emitted from sampling site 43
Table 4.3 Summary presentation of research findings
related to acetic/formic and malonic/succinic
ratios in aerosol 64
Table 4.4 Comparison of ratios for various wood burning
and atmosphere aerosols (reported in the literature) 66



Table 4.5 Varimax-rotated principal component loadings
of daily PM10 chemical species, gaseous pollutants
and wind during intensive observation period
of this study 68
Table 4.6 Inorganic salt concentrations (µg m-3) measured at various
sampling sites around the world in recent years 71
Table 4.7 Carboxylic acids concentrations (ng m-3)
measured at various sampling sites
around the world in recent years 72
Table 4.8 Anhydrosugars and sugar alcohols
concentrations (ng m-3) measured at various
sampling sites around the world in recent years 73











LIST OF FIGURES

Figure 2.1 Idealized schematic of the distribution
of surface area of an atmospheric aerosol
(Whitby and Cantrell, 1976) 4
Figure 2.2 Production cycle of carboxylic acids
in the atmosphere (Sun and Ariya, 2006) 7
Figure 3.1 Ecotech MicroVol 1100 Particulate Samplers 28
Figure 3.2 Map of Chiang Mai Basin areas
identifying the location of air sampling sites 28
Figure 3.3 Step for MicroVol sampling and analysis flow chart 32
Figure 3.4 Wind rose charts during intensive
observation period (a) IOP1 and IOP2 36
Figure 4.1 PM10 mass concentration of intensive observation
period with PCD data during period of study 40
Figure 4.2 Correlation of PM10 concentration from PCD data
with PM10 concentration from observed site
during period of this study 41
Figure 4.3 Mean of inorganic species concentration
in daytime and nighttime (a) during non episodic
pollution period and (b) during the PM10 episode
emitted from sampling sites 48

Figure 4.4 Mean of carboxylic acids concentration
in daytime and nighttime (a) during non episodic
pollution period and (b) during the PM10 episode
emitted from sampling sites 50
Figure 4.5 Mean of anhydrosugar and sugar alcohols
concentration in daytime and nighttime
(a) during non episodic pollution period and
(b) during the PM10 episode emitted from
sampling sites 52
Figure 4.6 Contribution of individual species to total
composition in PM10 during intensive observation
period of each sites 54
Figure 4.7 Contribution of individual species to total
amount of inorganic species in PM10
during intensive observation period of each sites 55
Figure 4.8 Contribution of individual species to total
amount of carboxylic acids in PM10 during
intensive observation period of each sites 57
Figure 4.9 Correlation of potassium concentration with
oxalic acid concentration of each site sampling 58
Figure 4.10 Contribution of individual species to
total amount of anhydrosugars in PM10
during intensive observation period of each sites 60
Figure 4.11 Correlation of levoglucosan concentration with
potassium concentration of each site sampling 61
Figure 4.12 Contribution of individual species to total
amount of sugar alcohols in PM10 during
intensive observation period of each sites 62
Reference

Bari, M.A., Baumbach, G., Kuch, B., Scheffknecht, G., 2009. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmospheric Environment 43, 4722-4732.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., Puxbaum, H., 2008. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmospheric Environment 42, 588-593.
Bergauff, M.A., Ward, T.J., Noonan, C.W., Palmer, C.P., 2009. The effect of a woodstove changeout on ambient levels of PM2.5 and chemical tracers for woodsmoke in Libby, Montana. Atmospheric Environment 43, 2938-2943.
Caseiro, A., Marr, I.L., Claeys, M., Kasper-Giebl, A., Puxbaum, H., Pio, C.A., 2007. Determination of saccharides in atmospheric aerosol using anion-exchange high-performance liquid chromatography and pulsed-amperometric detection. Journal of Chromatography A 1171, 37-45.
Caseiro, A., Bauer, H., Schmidl, C., Pio, C.A., Puxbaum, H., 2009. Wood burning impact on PM10 in three Austrian regions. Atmospheric Environment 43, 2186-2195.
Chantara, S., and Chunsuk, N., 2008. Comparison of wet-only and bulk deposition at Chiang Mai (Thailand) based on rainwater chemical composition. Atmospheric Environment 42, 5511-5518.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmospheric Environment 30, 4233-4249.
Engling, G., Carrico, C.M., Kreidenweis, S.M., Collett, J.L., Jr, Day, D.E., Malm, W.C., Lincoln, E., Hao, W.M., Iinuma, Y., Herrmann, H., 2006a. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmospheric Environment 40, S299-S311.
Engling, G., Herckes, P., Kreidenweis, S.M., Malm, W.C., Collett Jr, J.L., 2006b. Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmospheric Environment 40, 2959-2972.
Fabbri, D., Torri, C. Simoneit, B.R.T., Marynowski, L., Rushdi, A.I., Fabiańska, M.J., 2009. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmospheric Environment 43, 2286-2295.
Fine, P.M., Cass, G.R., Simoneit, B.R.T., 2002. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the southern United States. Environmental Science and Technology 36, 1442-1451.
Fine, P.M., Cass, G.R., Simoneit, B.R.T., 2004. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the midwestern and western United States. Environmental Engineering Science 21, 387-409.
Glasius, M., Wessel, S., Christensen, C.S., Jacobsen, J.K., Jørgensen, H.E., Klitgaard, K.C., Petersen, L., Rasmussen, J.K., Hansen, T.S., Lohse, C., Boaretto, E., Heinemeier, J., 2000. Sources to formic acid studied by carbon isotopic analysis and air mass characterization. Atmospheric Environment 34, 2471-2479.
Godish, T., 1997. Air Quality, third edition. Lewis Publishers, Inc.
Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030-3040.
Hsieh, L.-Y., Kuo, S.-C., Chen, C.-L., Tsai, Y.I., 2007. Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol. Atmospheric Environmental 41, 6648-6661.
Hsieh, L.-Y., Chen, C.-L., Wan, M.-W., Tsai, C.-H., Tsai, Y.I., 2008. Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmospheric Environment 42, 6836-6850.
Hsieh, L.-Y., Kuo, S.-C., Chen, C.-L., Tsai, Y.I.,2009. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmospheric Environment 43, 4396-4406.
Jaffrezo, J.-L., Davidson, C.I., Kuhns, H.D., Bergin, M.H., Hillamo, R., Maenhaut, W., Kahl, J.W., Harris, J.M., 1998. Biomass burning signatures in the atmosphere of central Greenland. Journal of Geophysical Research 103, 31067-31078.
Jordan, T.B., Seen, A.J., Jacobsen, G.E., 2006. Levoglucosan as an atmospheric tracer for woodsmoke. Atmospheric Environment 40, 5316-5321.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science & Technology 21, 105-110.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2233.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509.
Khwaja, H.A., 1995. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmospheric Environment 29, 127-139.
Lee, J.J., Engling, G., Lung, S.-C. C., Lee, K.-Y., 2008. Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning. Atmospheric Environment 42, 8300-8308.
Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C., 2001. Semivolatile behavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmospheric Environment 35, 1853-1862.
Logan, J.A., 1983. Nitrogen oxides in the troposphere: global and regional budgets. Journal of Geophysical Research 88, 10785-10807.
Medeiros, P.M., Conte, M.H., Weber, J.C., Simoneit, B.R.T., 2006. Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmospheric Environment 40, 1694-1705.
Narukawa, M., Kawamura, K., Li, S.-M., Bottenheim, J.W., 2002. Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. Atmospheric Environment 36, 2491-2499.
Pigman, W., Horton, D., 1970. The Carbohydrates-Chemistry and Biochemistry, second ed., vol. 1A. Academic Press, New York, 642pp.
Pio, C.A., Legrand, M., Alves, C.A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencser, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Ray, J., McDow, S.R., 2005. Dicarboxylic acid concentration trends and sampling artifacts. Atmospheric Environment 39, 7906-7919.
Röhrl, A., Lammel, G., 2002. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples. Chemosphere 46, 1195-1199.
Salam, A., Bauer, H., Kassin, K., Ullah, S. M., and Puxbaum, H., 2003. Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka-Bangladesh). Atmospheric Environment 37, 2517-2528.
Santos, d. C. Y. M. , Almeida Azevedo, d. D. and Aquino Neto, d. F. R., 2002. Selected organic compounds from biomass burning found in the atmospheric particulate matter over sugarcane plantation areas. Atmospheric Environment 36, 3009-3019.
Schmidl, C., Marr, I.L., Caseiro, A.e, Kotianová , P., Berner, A., Bauer, H., Kasper- Giebl, A., Puxbaum, H., 2008a. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126-141.
Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I.L., Puxbaum, H., 2008b. Chemical characterisation of particle emissions from burning leaves. Atmospheric Environment 42, 9070-9079.
Sheesley, R.J., Schauer, J.J., Chowdhury, Z., Cass, G.R., Simoneit, B.R.T., 2003. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research 108, 4285.
Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment 33, 173-182.
Souza, S.R., Vasconcellos, P.C., Carvalho L.R.F., 1999. Low molecular weight carboxylic acids in an urban atmosphere: winter measurements in São Paulo City, Brazil. Atmospheric Environment 33, 2563-2574.
Sun, J. and Ariya, P. A., 2006. Atmospheric organic and bioaerosols as cloud condensation nuclei: A review. Atmospheric Environment 40, 795-820.
Talbot, R.W., Beecher, K.M., Harris, R.C., Cofer, R.W., 1988. Atmospheric geochemistry of formic and acetic acids at a mid latitude temperate site. Journal of Geophysical Research 93, 1638-1652.
Tsai, Y.I., Cheng, M.T., 2004. Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere 54, 1171-1181.
Tsai, Y.I., 2005. Atmospheric visibility trends in an urban area in Taiwan 1961-2003. Atmospheric Environment 39, 5555-5567.
Tsai, Y.I., Hsieh, L.-Y., Weng, T.-H., Ma, Y.-C., Kuo, S.-C., 2008. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography. Analytica Chimica Acta, 626, 78-88.
Tsai, Y.I., Wu, P.-L., Hsu, Y.-T., Yang, C.-R., 2010. Anhydrosugar and sugar alcohol organic markers associated with carboxylic acids in particulate matter from incense burning. Atmospheric Environment 44, 3708-3718.
Villanueva-Fierro, I., Popp, C. J., and Martin, R. S., 2004. Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico. Atmospheric Environment 38, 249-260.
Vinitketkumnuen, U., Kalayanamitra, K., Chewonarin, T., Kamens, R., 2002. Particulate matter, PM 10 & PM 2.5 levels, and airborne mutagenicity in Chiang Mai, Thailand. Mutation Research 519, 121-131.
Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment 36, 1941-1950.
Wang, H., Shooter, D., 2004. Low molecular weight dicarboxylic acids in PM10 in a city with intensive solid fuel burning. Chemosphere 56, 725-733.
Wang, Q., Shao, M., Liu, Y., William, K., Paul, G., Li, X., Liu, Y., Lu, S., 2007a. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment 41, 8380-8390.
Wang, Y., Zhuang, G., Chen, S., An, Z., Zheng, A., 2007b. Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Research 84, 169-181,
Ward, T.J., Hamilton, R.F., Dixon, R.W., Paulsen, M., Simpson, C.D., 2006. Characterization and evaluation of smoke tracers in PM: Results from the 2003 Montana wildfire season. Atmospheric Environment 40, 7005-7017.
Whitby, K. T., Cantrell, B. K., 1976. Atmospheric aerosols characteristics and measurement. In: International Conference on Environmental Sensing and Assessment (ICESA), Institute of Electrical and Electronic Engineers (IEEE), ICESA, Las Vegas, NV, 1-6.
Xingru, L., Xueqing, G., Xinran, L., Chenshu, L., Shanshan, Z., Yuesi, W., 2009. Distribution and sources of solvent extractable organic compounds in PM2.5 during 2007 Chinese Spring Festival in Beijing. Journal of Environmental Sciences 21, 142-149.
Yao, X., Fang, M., Chan, C.K., 2002. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099-2107.
Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
Zhang, T., Claeys, M.,Cachier, H., Dong, S., Wang, W., Maenhaut, W., Liu, X., 2008. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment 42, 7013-7021.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 谷瑞照:〈先秦時期的夷夏觀念〉,《復興崗學報》,1977年6月,第17期。
2. 簡宗梧:〈左傳強調晉文公得人而得國〉,《孔孟月刊》,1980年11月19卷第3期。
3. 簡光明:〈〈秦晉殽之戰〉析論─兼論其在國文教學上的運用〉,《屏東教育大學學報》,台灣屏東,2005年第23期,頁173-198。
4. 林淑貞:〈抉擇的智慧─讀重耳出亡始末有感〉,《國文天地》,2000年10月第16卷第5期。
5. 陽平南:〈從左傳敘戰論春秋時代戰爭觀〉,《筧橋學報》,1999年9月第6期。
6. 李隆獻:〈中國敘事文學的不遷之祧-淺析左傳的敘事技巧〉,《錢穆先生紀念館館刊》1997年,第5期。
7. 簡宗梧:〈左傳屬辭比事的成就─以記晉惠公與晉文公為例〉,《東方雜誌》,1988年4月,第21卷第10期。
8. 簡宗梧:〈左傳寫晉文公的譎而不正〉,《孔孟月刊》,1982年1月第19卷第5期。
9. 劉文強:〈再論鄭莊公─補《左傳微》〉,《文與哲》,2006年12月第9期。
10. 沈秋雄〈李義山詠物詩探析〉《教學與研究》第十三期 1991年 6 月
11. 李霖生〈靈山:文學虛無的歸宿〉 《玄奘學報》第4期 2001年10月
12. 黃盛雄〈李義山的感遇詩〉 《臺中師院學報》第3期 1989年6月
13. 廖蔚卿〈從文學現象與文學思想的關係談六朝巧構形似之言的詩〉 《中外文學》3卷7-8 期 1974年
14. 汪美香、葉桂珍(2003)。年輕網路族對網站特性之認知與網路購物意圖之關連性研究,資訊管理展望,第五卷,第1期,頁19-44。
15. 賴建都(1998)。網際網路廣告訊息設計之研究。《廣告學研究》,11:19-36。