(3.238.96.184) 您好!臺灣時間:2021/05/08 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐瑋佑
研究生(外文):WEI-YU
論文名稱:6-薑醇對人類大腸癌細胞LoVo之抗癌機制研究
論文名稱(外文):Investigating anticancer effects of 6-gingerol on human colon cancer cell LoVo
指導教授:高紹軒
指導教授(外文):Shao-Hsuan Kao
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:58
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薑,是世界各地使用歷史悠久的香辛料與香味成份,因為具有治療腸胃不舒服、止吐、抗發炎以及抗癌等療效與生化功能也被當做中藥的成分。本篇論文針對薑的香味成份gingerols探討人類大腸直腸癌細胞LoVo之存活率。給予不同濃度的6-gingerol,培養不同時間,經MTT生長抑制試驗、流式細胞儀觀察PI染色後的細胞週期現象,分析是否有誘發細胞凋亡現象。結果顯示6-gingerol對LoVo有生長抑制以及細胞週期有G2/M arrest現象。Western blot檢測6-gingerol對細胞週期調節蛋白cyclinB1、Cdk1、 p27及p21表達的影響。6-gingerol作用24、48小時後可使LoVo細胞週期阻滯於G2/M期,並可抑制cyclinB1、 Cdk1蛋白的表現,促進p21、27蛋白的表現。結論:6-gingerol可以抑制LoVo增生,誘導其產生細胞週期停滯,且作用具有劑量依賴性,6-gingerol抑制LoVo增生的機制可能是使LoVo細胞週期停滯於G2/M期,阻止其通過G0/G1關卡。

Ginger, the rhizome of Zingiber officinale, known commonly as ginger, is consumed worldwide as a spice and a flavoring agent. It has been used in traditional medicine with carminative effect, anti-nausea, anti-inflammatory, and anti-carcinogenic properties.This study examined the growth inhibitory effects of the gingerols in human cancer cells. The effects of 6-gingerol on cell viability in human colorectal carcinoma LoVo cells were investigated. After the addition of different concentrations of 6-gingerol, the cultures were incubated further for various periods of time. Induction of apoptosis was manifested by cytotoxicity in MTT tests, cell cycle arrest in flow cytometry analysis. For the evaluation of apoptosis. The results indicated that 6-gingerol inhibited cell growth of LoVo, and G2/M arrest. The expression of cell cycle-related proteins, such as cyclin B1, Cdk1, p21 and p27 were detected by Western blot assay . Cell cycle of LoVo cell was arrested at G2/M phase after treatment of 6-gingerol for 24 and 48 h; Western blot assay showed that cyclin B1、Cdk1 protein was down-regulated and p21、27 protein was upregulated after 6-gingerol treatment. CONCLUSION: The 6-gingerol can inhibit the proliferation and induce cell cycle arrest to LoVo, in a dose-dependent manner. The possible mechanism to inhibit the proliferation of LoVo may be related with LoVo in G2/M phase due to 6-gingerol action to prevent LoVo to pass G0/G1 checkpoint.

目錄…………………………………………………………...2
誌謝…………………………………………………………...3
中英文摘要…………………………………………………...4
縮寫表……………………...…………………………………7
壹、緒論……………………………………………………… 8
貳、研究動機與目的………………………………………..18
參、實驗材料及方法…………………………………………19
肆、實驗結果…………………………………………………29
伍、討論………………………………………………………32
陸、參考文獻…………………………………………………35
柒、圖表與圖表說明…………………………………………43
捌、表格………………………………………………………55
玖、附圖………………………………………………………56


1.Wynder, E.L., et al., Environmental factors of cancer of the colon and rectum. II. Japanese epidemiological data. Cancer, 1969. 23(5): p. 1210-20.
2.Willett, W.C., et al., Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med, 1990. 323(24): p. 1664-72.
3.Reddy, B.S., Nutritional factors and colon cancer. Crit Rev Food Sci Nutr, 1995. 35(3): p. 175-90.
4.Potter, J.D. and K. Steinmetz, Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci Publ, 1996(139): p. 61-90.
5.Pollard, M. and P.H. Luckert, Effect of indomethacin on intestinal tumors induced in rats by the acetate derivative of dimethylnitrosamine. Science, 1981. 214(4520): p. 558-9.
6.Craven, P.A. and F.R. DeRubertis, Effects of aspirin on 1,2-dimethylhydrazine-induced colonic carcinogenesis. Carcinogenesis, 1992. 13(4): p. 541-6.
7.Bayer, B.M. and M.A. Beaven, Evidence that indomethacin reversibly inhibits cell growth in the G1 phase of the cell cycle. Biochem Pharmacol, 1979. 28(3): p. 441-3.
8.Soll, A.H., et al., Nonsteroidal anti-inflammatory drugs and peptic ulcer disease. Ann Intern Med, 1991. 114(4): p. 307-19.
9.Wenzel, U., et al., Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res, 2000. 60(14): p. 3823-31.
10.Welch, C., L. Wuarin, and N. Sidell, Antiproliferative effect of the garlic compound S-allyl cysteine on human neuroblastoma cells in vitro. Cancer Lett, 1992. 63(3): p. 211-9.
11.Shirin, H., et al., Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide. Cancer Res, 2001. 61(2): p. 725-31.
12.Aeschbach, R., et al., Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol, 1994. 32(1): p. 31-6.
13.Guh, J.H., et al., Antiplatelet effect of gingerol isolated from Zingiber officinale. J Pharm Pharmacol, 1995. 47(4): p. 329-32.
14.Surh, Y.J., et al., Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger. J Environ Pathol Toxicol Oncol, 1999. 18(2): p. 131-9.
15.Yang, F. and R.E. Boissy, Effects of 4-tertiary butylphenol on the tyrosinase activity in human melanocytes. Pigment Cell Res, 1999. 12(4): p. 237-45.
16.Kim, E.C., et al., [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun, 2005. 335(2): p. 300-8.
17.Kim, S.O., et al., [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin. Oncogene, 2005. 24(15): p. 2558-67.
18.Kim, S.O., et al., Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin. Biofactors, 2004. 21(1-4): p. 27-31.
19.Shah, M.A. and G.K. Schwartz, Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res, 2001. 7(8): p. 2168-81.
20.Smith, M.L. and A.J. Fornace, Jr., Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res, 1996. 340(2-3): p. 109-24.
21.Sherr, C.J., G1 phase progression: cycling on cue. Cell, 1994. 79(4): p. 551-5.
22.Draetta, G.F., Mammalian G1 cyclins. Curr Opin Cell Biol, 1994. 6(6): p. 842-6.
23.Hunter, T. and J. Pines, Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994. 79(4): p. 573-82.
24.King, R.W., P.K. Jackson, and M.W. Kirschner, Mitosis in transition. Cell, 1994. 79(4): p. 563-71.
25.Reed, S.I., et al., G1 control in mammalian cells. J Cell Sci Suppl, 1994. 18: p. 69-73.
26.Morgan, D.O., Principles of CDK regulation. Nature, 1995. 374(6518): p. 131-4.
27.Sherr, C.J. and J.M. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995. 9(10): p. 1149-63.
28.Tyson, J.J., et al., Chemical kinetic theory: understanding cell-cycle regulation. Trends Biochem Sci, 1996. 21(3): p. 89-96.
29.McGill, C.J. and G. Brooks, Cell cycle control mechanisms and their role in cardiac growth. Cardiovasc Res, 1995. 30(4): p. 557-69.
30.Martinez, A.M., et al., Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J, 1997. 16(2): p. 343-54.
31.Andersen, G., et al., The structure of cyclin H: common mode of kinase activation and specific features. EMBO J, 1997. 16(5): p. 958-67.
32.Li, J.M. and G. Brooks, Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy? Eur Heart J, 1999. 20(6): p. 406-20.
33.Pines, J., Cyclin-dependent kinase inhibitors: the age of crystals. Biochim Biophys Acta, 1997. 1332(1): p. M39-42.
34.Brooks, G., R.A. Poolman, and J.M. Li, Arresting developments in the cardiac myocyte cell cycle: role of cyclin-dependent kinase inhibitors. Cardiovasc Res, 1998. 39(2): p. 301-11.
35.Driscoll, J.S., et al., Structure-antitumor activity relationships among quinone derivatives. Cancer Chemother Rep 2, 1974. 4(2): p. 1-362.
36.Xu, K., et al., Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase. Biochem J, 2003. 371(Pt 3): p. 957-64.
37.Pagano, M., et al., Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 1995. 269(5224): p. 682-5.
38.Schneider, G., et al., IKKalpha controls p52/RelB at the skp2 gene promoter to regulate G1- to S-phase progression. EMBO J, 2006. 25(16): p. 3801-12.
39.Matushansky, I., F. Radparvar, and A.I. Skoultchi, Manipulating the onset of cell cycle withdrawal in differentiated erythroid cells with cyclin-dependent kinases and inhibitors. Blood, 2000. 96(8): p. 2755-64.
40.el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817-25.
41.Rose, S.L., et al., p21 expression predicts outcome in p53-null ovarian carcinoma. Clin Cancer Res, 2003. 9(3): p. 1028-32.
42.Sohn, D., et al., p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res, 2006. 66(23): p. 11254-62.
43.Zhang, Y., N. Fujita, and T. Tsuruo, p21Waf1/Cip1 acts in synergy with bcl-2 to confer multidrug resistance in a camptothecin-selected human lung-cancer cell line. Int J Cancer, 1999. 83(6): p. 790-7.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔