(3.238.235.155) 您好!臺灣時間:2021/05/16 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林敬峰
論文名稱:紫鉚花素誘發乳癌細胞走向細胞凋亡透過活性氧分子及有絲分裂因數活化蛋白質激酶路徑
論文名稱(外文):Butein induced apoptosis through reactive oxygen species/ Mitogen-activated protein kinase pathway in breast cancer cells.
指導教授:許立松
指導教授(外文):Li-Sung Hsu
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:79
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紫鉚花素是一種從Rhus verniciflua Stokes抽取的多酚類物質,目前研究發現紫鉚花素可以藉由產生過氧化壓力進而促使許多癌細胞死亡,但是紫鉚花素對於乳癌細胞的作用機制尚未完全厘清。在此研究,我們發現紫鉚花素可以抑制乳癌細胞生長為濃度以及時間依賴性。我們亦利用DNA濃縮以及細胞在sub-G1時期的百分比來偵測紫鉚花素促使細胞走向凋亡現象。紫鉚花素可以產生活性氧化物質並且抑制活化態ERK活性以及活化態AKT活性和增加活化態p-38。利用流式細胞儀的分析,可觀察到紫鉚花素同樣可使乳癌細胞產生大量ROS,之後再處理抗氧化劑N-acetyl-cysteine (NAC)不但能降低紫鉚花素所造成ROS的產生並且能減少紫鉚花素對乳癌細胞的毒殺效果。綜合我們的研究顯示紫鉚花素可以抑制乳癌細胞生長並透過活性氧化物質和經由MAPKs路徑和AKT 路徑,促使Bcl-2蛋白的下降,讓Caspase 3切割,接著引發PARP的斷裂,進而引發細胞凋亡。

Butein (3,4,2_,4_-tetrahydroxychalcone), a component of Rhus verniciflua Stokes,is known to induce several cancer cell death through oxidative stress, however, the direct involvement of oxidants in butein-induced breast cancer cell death remain unknown. In this study, we show that butein inhibited the proliferation of human breast cancer cell (MDA-MB-231) in a dose- and time-dependent manner. Treatment with butein also induced apoptosis as evidence by increasing DNA condensation and sub-G1 phase DNA content. Butein induced generation of reactive oxygen species (ROS) and accompanied with decreased the phosphorylation states of ERK and AKt and increased the phosphorylation states of p-38, decreased B-cell lymphoma-2 (Bcl2) expression, and was accompanied by poly(ADP-ribose) polymerase (PARP) cleavage Pretreated with N-acetyl cysteine (NAC) which is a strong antioxidant agent abrogated butein-induced apoptotic effect, decreased ROS level, and recovered the phosaphorylation status of ERK , and reduced Bcl2, which consequently caused the cells to undergo apoptosis. Collectedly, our results revealed that butein induced apoptosis in breast cancer cells via generation of ROS and inhibited the activities of ERK and AKT, which can be reversed by pre-treated with antioxidant agent such as NAC.

中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
縮寫表 VII
壹、緒論 1
一、癌症(Cancer) 2
二、乳癌(The introduction of Breast cancer) 3
三、 細胞凋亡 5
四、有絲分裂因子-活化蛋白質激酶路徑(mitogen-activated protein kinase pathways, MAPK pathways ) 8
五、PKB / Akt(protein kinase B ) 11
六、自由基與含氧自由基 11
七、細胞內產生ROS 的過程與預防機制 14
八、類黃酮(Flavonoids) 15
貳、研究動機 18
參、實驗材料與方法 19
一、化學藥劑 19
二、抗體 21
三、實驗材料 21
四、常用儀器 22
肆、實驗方法 23
(1)細胞株背景資料 23
(2)解凍細胞 24
(3)冷凍細胞 24
(4)細胞培養 25
(5)細胞數目計算 25
(6)細胞存活檢測(MTT cell viability assay) 26
(7)蛋白質濃度定量 27
(8)西方墨點法 28
(9)流式細胞分析法(Flow cytometry) 30
(10)DAPI(4'',6-DiAmidino-2-PhenylIndole) stain 32
(11)自由基的測量 (measurement of ROS Production) 33
伍、結果 35
一、 紫鉚花素 對 MDA-MB-231人類乳癌細胞存活率的影響 35
二、紫鉚花素透過誘導細胞凋亡造成MDA-MB-231人類乳癌細胞死亡 36
三、紫鉚花素 對 MDA-MB-231人類乳癌細胞株的細胞週期之影響 37
四、紫鉚花素 調控 AKT 與ERK以及p38訊息傳遞路徑 38
五、紫鉚花素影響與細胞凋亡的相關的蛋白 39
六、紫鉚花素促使細胞凋亡是透過活性氧化物質 40
陸、討論 43
柒、圖表與說明 47
捌、附錄 66
玖、文獻回顧 67

1.Kelsey, J.L. and L. Bernstein, Epidemiology and prevention of breast cancer. Annu Rev Public Health, 1996. 17: p. 47-67.
2.Kelsey, J.L. and P.L. Horn-Ross, Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiol Rev, 1993. 15(1): p. 7-16.
3.Kong, Q., J. Sun, and L.D. Kong, Cell brain crystallization for cancer therapy. Med Hypotheses, 2002. 59(4): p. 367-72.
4.Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
5.Wijnhoven, S.W., E. Zwart, E.N. Speksnijder, R.B. Beems, K.P. Olive, D.A. Tuveson, J. Jonkers, M.M. Schaap, J. van den Berg, T. Jacks, H. van Steeg, and A. de Vries, Mice expressing a mammary gland-specific R270H mutation in the p53 tumor suppressor gene mimic human breast cancer development. Cancer Res, 2005. 65(18): p. 8166-73.
6.Soriano, P., C. Montgomery, R. Geske, and A. Bradley, Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell, 1991. 64(4): p. 693-702.
7.Ross, J.S. and J.A. Fletcher, HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am J Clin Pathol, 1999. 112(1 Suppl 1): p. S53-67.
8.Friedrichs, K., W. Jonat, J. Meybohm, and S. Singh, [Oncogene organization and expression in breast cancer exemplified by proto-oncogene c-erb B2]. Arch Gynecol Obstet, 1989. 245(1-4): p. 658-60.
9.Kim, H., H. Chung, H.J. Kim, J.Y. Lee, M.Y. Oh, Y. Kim, and G. Kong, Id-1 regulates Bcl-2 and Bax expression through p53 and NF-kappaB in MCF-7 breast cancer cells. Breast Cancer Res Treat, 2008. 112(2): p. 287-96.
10.Selim, A.G., G. El-Ayat, and C.A. Wells, Expression of c-erbB2, p53, Bcl-2, Bax, c-myc and Ki-67 in apocrine metaplasia and apocrine change within sclerosing adenosis of the breast. Virchows Arch, 2002. 441(5): p. 449-55.
11.Zhou, Q., M. Stetler-Stevenson, and P.S. Steeg, Inhibition of cyclin D expression in human breast carcinoma cells by retinoids in vitro. Oncogene, 1997. 15(1): p. 107-15.
12.Span, P.N., V.C. Tjan-Heijnen, P. Manders, L.V. Beex, and C.G. Sweep, Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene, 2003. 22(31): p. 4898-904.
13.Leibl, H. and J. Spona, Differential stimulation by 17 beta-estradiol and synthetic estrogens of progesterone-receptor and of translocation of estrogen-receptor in rat pituitary and uterus. Endocrinology, 1982. 110(1): p. 265-71.
14.Henderson, I.C., Risk factors for breast cancer development. Cancer, 1993. 71(6 Suppl): p. 2127-40.
15.Service, R.F., New role for estrogen in cancer? Science, 1998. 279(5357): p. 1631-3.
16.Rossouw, J.E., G.L. Anderson, R.L. Prentice, A.Z. LaCroix, C. Kooperberg, M.L. Stefanick, R.D. Jackson, S.A. Beresford, B.V. Howard, K.C. Johnson, J.M. Kotchen, and J. Ockene, Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women''s Health Initiative randomized controlled trial. JAMA, 2002. 288(3): p. 321-33.
17.Cummings, S.R., T. Duong, E. Kenyon, J.A. Cauley, M. Whitehead, and K.A. Krueger, Serum estradiol level and risk of breast cancer during treatment with raloxifene. JAMA, 2002. 287(2): p. 216-20.
18.MacGregor, J.I. and V.C. Jordan, Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev, 1998. 50(2): p. 151-96.
19.Sommer, S. and S.A. Fuqua, Estrogen receptor and breast cancer. Semin Cancer Biol, 2001. 11(5): p. 339-52.
20.Sheikh, M.S., X.S. Li, J.C. Chen, Z.M. Shao, J.V. Ordonez, and J.A. Fontana, Mechanisms of regulation of WAF1/Cip1 gene expression in human breast carcinoma: role of p53-dependent and independent signal transduction pathways. Oncogene, 1994. 9(12): p. 3407-15.
21.Niewolik, D., B. Vojtesek, and J. Kovarik, p53 derived from human tumour cell lines and containing distinct point mutations can be activated to bind its consensus target sequence. Oncogene, 1995. 10(5): p. 881-90.
22.Medema, R.H., R.E. Herrera, F. Lam, and R.A. Weinberg, Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci U S A, 1995. 92(14): p. 6289-93.
23.Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
24.Lockshin, R.A. and J. Beaulaton, Programmed cell death. Life Sci, 1974. 15(9): p. 1549-65.
25.Zakeri, Z. and R.A. Lockshin, Physiological cell death during development and its relationship to aging. Ann N Y Acad Sci, 1994. 719: p. 212-29.
26.Reddien, P.W., S. Cameron, and H.R. Horvitz, Phagocytosis promotes programmed cell death in C. elegans. Nature, 2001. 412(6843): p. 198-202.
27.Ernest, N.J., C.W. Habela, and H. Sontheimer, Cytoplasmic condensation is both necessary and sufficient to induce apoptotic cell death. J Cell Sci, 2008. 121(Pt 3): p. 290-7.
28.Klionsky, D.J. and S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science, 2000. 290(5497): p. 1717-21.
29.Savill, J., V. Fadok, P. Henson, and C. Haslett, Phagocyte recognition of cells undergoing apoptosis. Immunol Today, 1993. 14(3): p. 131-6.
30.Vermes, I., C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, 1995. 184(1): p. 39-51.
31.Reed, J.C., Bcl-2 family proteins. Oncogene, 1998. 17(25): p. 3225-36.
32.Kroemer, G., P. Petit, N. Zamzami, J.L. Vayssiere, and B. Mignotte, The biochemistry of programmed cell death. FASEB J, 1995. 9(13): p. 1277-87.
33.Cosulich, S.C., P.J. Savory, and P.R. Clarke, Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol, 1999. 9(3): p. 147-50.
34.Ozoren, N. and W.S. El-Deiry, Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol, 2003. 13(2): p. 135-47.
35.Sun, X.M., M. MacFarlane, J. Zhuang, B.B. Wolf, D.R. Green, and G.M. Cohen, Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem, 1999. 274(8): p. 5053-60.
36.Neiman, A.M., B.J. Stevenson, H.P. Xu, G.F. Sprague, Jr., I. Herskowitz, M. Wigler, and S. Marcus, Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol Biol Cell, 1993. 4(1): p. 107-20.
37.Raman, M., W. Chen, and M.H. Cobb, Differential regulation and properties of MAPKs. Oncogene, 2007. 26(22): p. 3100-12.
38.Seternes, O.M., B. Johansen, B. Hegge, M. Johannessen, S.M. Keyse, and U. Moens, Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Mol Cell Biol, 2002. 22(20): p. 6931-45.
39.Bell, L.M., M.L. Leong, B. Kim, E. Wang, J. Park, B.A. Hemmings, and G.L. Firestone, Hyperosmotic stress stimulates promoter activity and regulates cellular utilization of the serum- and glucocorticoid-inducible protein kinase (Sgk) by a p38 MAPK-dependent pathway. J Biol Chem, 2000. 275(33): p. 25262-72.
40.Gorostizaga, A., L. Brion, P. Maloberti, F.C. Maciel, E.J. Podesta, and C. Paz, Heat shock triggers MAPK activation and MKP-1 induction in Leydig testicular cells. Biochem Biophys Res Commun, 2005. 327(1): p. 23-8.
41.Wang, Z.Q., D.C. Wu, F.P. Huang, and G.Y. Yang, Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res, 2004. 996(1): p. 55-66.
42.Chaparro-Huerta, V., M.E. Flores-Soto, G. Gudino-Cabrera, M.C. Rivera-Cervantes, O.K. Bitzer-Quintero, and C. Beas-Zarate, Role of p38 MAPK and pro-inflammatory cytokines expression in glutamate-induced neuronal death of neonatal rats. Int J Dev Neurosci, 2008. 26(5): p. 487-95.
43.Pastorino, J.G., N. Shulga, and J.B. Hoek, TNF-alpha-induced cell death in ethanol-exposed cells depends on p38 MAPK signaling but is independent of Bid and caspase-8. Am J Physiol Gastrointest Liver Physiol, 2003. 285(3): p. G503-16.
44.Hagemann, C. and J.L. Blank, The ups and downs of MEK kinase interactions. Cell Signal, 2001. 13(12): p. 863-75.
45.Hazzalin, C.A., E. Cano, A. Cuenda, M.J. Barratt, P. Cohen, and L.C. Mahadevan, p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr Biol, 1996. 6(8): p. 1028-31.
46.Khokhlatchev, A.V., B. Canagarajah, J. Wilsbacher, M. Robinson, M. Atkinson, E. Goldsmith, and M.H. Cobb, Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell, 1998. 93(4): p. 605-15.
47.Samaj, J., M. Ovecka, A. Hlavacka, F. Lecourieux, I. Meskiene, I. Lichtscheidl, P. Lenart, J. Salaj, D. Volkmann, L. Bogre, F. Baluska, and H. Hirt, Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J, 2002. 21(13): p. 3296-306.
48.Coltella, N., A. Rasola, E. Nano, C. Bardella, M. Fassetta, N. Filigheddu, A. Graziani, P.M. Comoglio, and M.F. Di Renzo, p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis. Int J Cancer, 2006. 118(12): p. 2981-90.
49.Treisman, R., Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol, 1996. 8(2): p. 205-15.
50.Reszka, A.A., J.C. Bulinski, E.G. Krebs, and E.H. Fischer, Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol Biol Cell, 1997. 8(7): p. 1219-32.
51.L''Allemain, G., Deciphering the MAP kinase pathway. Prog Growth Factor Res, 1994. 5(3): p. 291-334.
52.Price, M.A., F.H. Cruzalegui, and R. Treisman, The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. EMBO J, 1996. 15(23): p. 6552-63.
53.Ceryak, S., C. Zingariello, T. O''Brien, and S.R. Patierno, Induction of pro-apoptotic and cell cycle-inhibiting genes in chromium (VI)-treated human lung fibroblasts: lack of effect of ERK. Mol Cell Biochem, 2004. 255(1-2): p. 139-49.
54.Xie, J., J. Qian, J. Yang, S. Wang, M.E. Freeman, 3rd, and Q. Yi, Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Exp Hematol, 2005. 33(5): p. 564-72.
55.Yamashita, M., R. Shinnakasu, H. Asou, M. Kimura, A. Hasegawa, K. Hashimoto, N. Hatano, M. Ogata, and T. Nakayama, Ras-ERK MAPK cascade regulates GATA3 stability and Th2 differentiation through ubiquitin-proteasome pathway. J Biol Chem, 2005. 280(33): p. 29409-19.
56.Ono, K. and J. Han, The p38 signal transduction pathway: activation and function. Cell Signal, 2000. 12(1): p. 1-13.
57.Lee, J.C. and P.R. Young, Role of CSB/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. J Leukoc Biol, 1996. 59(2): p. 152-7.
58.Raingeaud, J., A.J. Whitmarsh, T. Barrett, B. Derijard, and R.J. Davis, MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol, 1996. 16(3): p. 1247-55.
59.Han, Q., J. Leng, D. Bian, C. Mahanivong, K.A. Carpenter, Z.K. Pan, J. Han, and S. Huang, Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem, 2002. 277(50): p. 48379-85.
60.Hickson, J.A., D. Huo, D.J. Vander Griend, A. Lin, C.W. Rinker-Schaeffer, and S.D. Yamada, The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res, 2006. 66(4): p. 2264-70.
61.Zhou, J., G. Yao, J. Zhang, and Z. Chang, CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK. Biochem Biophys Res Commun, 2002. 296(4): p. 1013-8.
62.Lewis, J.S., V. Vijayanathan, T.J. Thomas, R.G. Pestell, C. Albanese, M.A. Gallo, and T. Thomas, Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol Res, 2005. 15(3): p. 113-28.
63.Burgering, B.M. and P.J. Coffer, Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 1995. 376(6541): p. 599-602.
64.Andjelkovic, M., T. Jakubowicz, P. Cron, X.F. Ming, J.W. Han, and B.A. Hemmings, Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A, 1996. 93(12): p. 5699-704.
65.Zhou, H., X.M. Li, J. Meinkoth, and R.N. Pittman, Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol, 2000. 151(3): p. 483-94.
66.Halliwell, B., M.A. Murcia, S. Chirico, and O.I. Aruoma, Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr, 1995. 35(1-2): p. 7-20.
67.Jacobson, E.S., E. Hove, and H.S. Emery, Antioxidant function of melanin in black fungi. Infect Immun, 1995. 63(12): p. 4944-5.
68.Benzie, I.F., Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol, 2003. 136(1): p. 113-26.
69.Fang, Y.Z., S. Yang, and G. Wu, Free radicals, antioxidants, and nutrition. Nutrition, 2002. 18(10): p. 872-9.
70.Young, T.A., C.C. Cunningham, and S.M. Bailey, Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys, 2002. 405(1): p. 65-72.
71.Jung, H.A., M.J. Jung, J.Y. Kim, H.Y. Chung, and J.S. Choi, Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch Pharm Res, 2003. 26(10): p. 809-15.
72.Bohm, F., R. Edge, M. Burke, and T.G. Truscott, Dietary uptake of lycopene protects human cells from singlet oxygen and nitrogen dioxide - ROS components from cigarette smoke. J Photochem Photobiol B, 2001. 64(2-3): p. 176-8.
73.Horak, P., A.R. Crawford, D.D. Vadysirisack, Z.M. Nash, M.P. DeYoung, D. Sgroi, and L.W. Ellisen, Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci U S A, 2010. 107(10): p. 4675-80.
74.Newton, R.K., J.M. Ducore, and R.S. Sohal, Relationship between life expectancy and endogenous DNA single-strand breakage, strand break induction and DNA repair capacity in the adult housefly, Musca domestica. Mech Ageing Dev, 1989. 49(3): p. 259-70.
75.Kehrer, J.P., Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol, 1993. 23(1): p. 21-48.
76.Cerutti, P.A., Prooxidant states and tumor promotion. Science, 1985. 227(4685): p. 375-81.
77.Salvador, A., J. Sousa, and R.E. Pinto, Hydroperoxyl, superoxide and pH gradients in the mitochondrial matrix: a theoretical assessment. Free Radic Biol Med, 2001. 31(10): p. 1208-15.
78.Hanukoglu, I., R. Rapoport, L. Weiner, and D. Sklan, Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system. Arch Biochem Biophys, 1993. 305(2): p. 489-98.
79.Freeman, B.A. and J.D. Crapo, Biology of disease: free radicals and tissue injury. Lab Invest, 1982. 47(5): p. 412-26.
80.Kinnula, V.L., J.D. Crapo, and K.O. Raivio, Generation and disposal of reactive oxygen metabolites in the lung. Lab Invest, 1995. 73(1): p. 3-19.
81.Brookes, P.S., A.L. Levonen, S. Shiva, P. Sarti, and V.M. Darley-Usmar, Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med, 2002. 33(6): p. 755-64.
82.Benzi, G., O. Pastoris, F. Marzatico, R.F. Villa, F. Dagani, and D. Curti, The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol Aging, 1992. 13(3): p. 361-8.
83.Butler, A.M. and M. Murray, Inhibition and inactivation of constitutive cytochromes P450 in rat liver by parathion. Mol Pharmacol, 1993. 43(6): p. 902-8.
84.Kasai, H., M.H. Chung, D.S. Jones, H. Inoue, H. Ishikawa, H. Kamiya, E. Ohtsuka, and S. Nishimura, 8-Hydroxyguanine, a DNA adduct formed by oxygen radicals: its implication on oxygen radical-involved mutagenesis/carcinogenesis. J Toxicol Sci, 1991. 16 Suppl 1: p. 95-105.
85.Upham, B.L., K.S. Kang, H.Y. Cho, and J.E. Trosko, Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis, 1997. 18(1): p. 37-42.
86.Nijveldt, R.J., E. van Nood, D.E. van Hoorn, P.G. Boelens, K. van Norren, and P.A. van Leeuwen, Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr, 2001. 74(4): p. 418-25.
87.Gao, Z., K. Huang, X. Yang, and H. Xu, Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta, 1999. 1472(3): p. 643-50.
88.Maruyama, W., Y. Akao, M.C. Carrillo, K. Kitani, M.B. Youdium, and M. Naoi, Neuroprotection by propargylamines in Parkinson''s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol, 2002. 24(5): p. 675-82.
89.Plaumann, B., M. Fritsche, H. Rimpler, G. Brandner, and R.D. Hess, Flavonoids activate wild-type p53. Oncogene, 1996. 13(8): p. 1605-14.
90.Formica, J.V. and W. Regelson, Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol, 1995. 33(12): p. 1061-80.
91.Caltagirone, S., C. Rossi, A. Poggi, F.O. Ranelletti, P.G. Natali, M. Brunetti, F.B. Aiello, and M. Piantelli, Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer, 2000. 87(4): p. 595-600.
92.Kang, D.G., A.S. Lee, Y.J. Mun, W.H. Woo, Y.C. Kim, E.J. Sohn, M.K. Moon, and H.S. Lee, Butein ameliorates renal concentrating ability in cisplatin-induced acute renal failure in rats. Biol Pharm Bull, 2004. 27(3): p. 366-70.
93.Lee, J.C., K.T. Lim, and Y.S. Jang, Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim Biophys Acta, 2002. 1570(3): p. 181-91.
94.Chan, S.C., Y.S. Chang, J.P. Wang, S.C. Chen, and S.C. Kuo, Three new flavonoids and antiallergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. Planta Med, 1998. 64(2): p. 153-8.
95.Kim, N.Y., H.O. Pae, G.S. Oh, T.H. Kang, Y.C. Kim, H.Y. Rhew, and H.T. Chung, Butein, a plant polyphenol, induces apoptosis concomitant with increased caspase-3 activity, decreased Bcl-2 expression and increased Bax expression in HL-60 cells. Pharmacol Toxicol, 2001. 88(5): p. 261-6.
96.Zhang, L., W. Chen, and X. Li, A novel anticancer effect of butein: inhibition of invasion through the ERK1/2 and NF-kappa B signaling pathways in bladder cancer cells. FEBS Lett, 2008. 582(13): p. 1821-8.
97.Moon, D.O., M.O. Kim, Y.H. Choi, J.W. Hyun, W.Y. Chang, and G.Y. Kim, Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett, 2010. 288(2): p. 204-13.
98.Pandey, M.K., S.K. Sandur, B. Sung, G. Sethi, A.B. Kunnumakkara, and B.B. Aggarwal, Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-kappaB and NF-kappaB-regulated gene expression through direct inhibition of IkappaBalpha kinase beta on cysteine 179 residue. J Biol Chem, 2007. 282(24): p. 17340-50.
99.Moon, D.O., M.O. Kim, J.D. Lee, Y.H. Choi, and G.Y. Kim, Butein suppresses c-Myc-dependent transcription and Akt-dependent phosphorylation of hTERT in human leukemia cells. Cancer Lett, 2009. 286(2): p. 172-9.
100.Son, Y.O., K.Y. Lee, J.C. Lee, H.S. Jang, J.G. Kim, Y.M. Jeon, and Y.S. Jang, Selective antiproliferative and apoptotic effects of flavonoids purified from Rhus verniciflua Stokes on normal versus transformed hepatic cell lines. Toxicol Lett, 2005. 155(1): p. 115-25.
101.Lee, J.C., K.Y. Lee, J. Kim, C.S. Na, N.C. Jung, G.H. Chung, and Y.S. Jang, Extract from Rhus verniciflua Stokes is capable of inhibiting the growth of human lymphoma cells. Food Chem Toxicol, 2004. 42(9): p. 1383-8.
102.Iwashita, K., M. Kobori, K. Yamaki, and T. Tsushida, Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem, 2000. 64(9): p. 1813-20.
103.Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63.
104.Compton, S.J. and C.G. Jones, Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem, 1985. 151(2): p. 369-74.
105.Darzynkiewicz, Z., S. Bruno, G. Del Bino, W. Gorczyca, M.A. Hotz, P. Lassota, and F. Traganos, Features of apoptotic cells measured by flow cytometry. Cytometry, 1992. 13(8): p. 795-808.
106.Garner, D.L. and L.A. Johnson, Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod, 1995. 53(2): p. 276-84.
107.Amiraliev, N.M., [Neoajuvant polychemotherapy at the complex treatment of the patients with laryngeal cancer]. Antibiot Khimioter, 2002. 47(3): p. 22-5.
108.Yen, C.H., C.C. Hsieh, S.Y. Chou, and Y.T. Lau, 17Beta-estradiol inhibits oxidized low density lipoprotein-induced generation of reactive oxygen species in endothelial cells. Life Sci, 2001. 70(4): p. 403-13.
109.Choi, S.I., C.S. Jeong, S.Y. Cho, and Y.S. Lee, Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase. Arch Pharm Res, 2007. 30(10): p. 1328-35.
110.Samoszuk, M., J. Tan, and G. Chorn, The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts. BMC Complement Altern Med, 2005. 5: p. 5.
111.Wong, W.W. and H. Puthalakath, Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life, 2008. 60(6): p. 390-7.
112.Acquaviva, J., R. Wong, and A. Charest, The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta, 2009. 1795(1): p. 37-52.
113.Dey, A., E. Wong, N. Kua, H.L. Teo, V. Tergaonkar, and D. Lane, Hexamethylene bisacetamide (HMBA) simultaneously targets AKT and MAPK pathway and represses NF kappaB activity: implications for cancer therapy. Cell Cycle, 2008. 7(23): p. 3759-67.
114.McCubrey, J.A., M.L. Sokolosky, B.D. Lehmann, J.R. Taylor, P.M. Navolanic, W.H. Chappell, S.L. Abrams, K.M. Stadelman, E.W. Wong, N. Misaghian, S. Horn, J. Basecke, M. Libra, F. Stivala, G. Ligresti, A. Tafuri, M. Milella, M. Zarzycki, A. Dzugaj, F. Chiarini, C. Evangelisti, A.M. Martelli, D.M. Terrian, R.A. Franklin, and L.S. Steelman, Alteration of Akt activity increases chemotherapeutic drug and hormonal resistance in breast cancer yet confers an achilles heel by sensitization to targeted therapy. Adv Enzyme Regul, 2008. 48: p. 113-35.
115.Wong, G.W., S.A. Krawczyk, C. Kitidis-Mitrokostas, G. Ge, E. Spooner, C. Hug, R. Gimeno, and H.F. Lodish, Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J, 2009. 23(1): p. 241-58.
116.Wong, G.W., S.A. Krawczyk, C. Kitidis-Mitrokostas, T. Revett, R. Gimeno, and H.F. Lodish, Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J, 2008. 416(2): p. 161-77.
117.Shi, L., W.K. Nishioka, J. Th''ng, E.M. Bradbury, D.W. Litchfield, and A.H. Greenberg, Premature p34cdc2 activation required for apoptosis. Science, 1994. 263(5150): p. 1143-5.
118.Cross, T.G., D. Scheel-Toellner, N.V. Henriquez, E. Deacon, M. Salmon, and J.M. Lord, Serine/threonine protein kinases and apoptosis. Exp Cell Res, 2000. 256(1): p. 34-41.
119.Fresco, P., F. Borges, C. Diniz, and M.P. Marques, New insights on the anticancer properties of dietary polyphenols. Med Res Rev, 2006. 26(6): p. 747-66.
120.Sarkar, J., N. Singh, S. Meena, and S. Sinha, Staurosporine induces apoptosis in human papillomavirus positive oral cancer cells at G2/M phase by disrupting mitochondrial membrane potential and modulation of cell cytoskeleton. Oral Oncol, 2009. 45(11): p. 974-9.
121.Kim, E.J., C.H. Choi, J.Y. Park, S.K. Kang, and Y.K. Kim, Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res, 2008. 33(6): p. 971-9.
122.Granado-Serrano, A.B., M.A. Martin, L. Bravo, L. Goya, and S. Ramos, Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr, 2006. 136(11): p. 2715-21.
123.Lee, S.H., G.S. Seo, X.Y. Jin, G. Ko, and D.H. Sohn, Butein blocks tumor necrosis factor alpha-induced interleukin 8 and matrix metalloproteinase 7 production by inhibiting p38 kinase and osteopontin mediated signaling events in HT-29 cells. Life Sci, 2007. 81(21-22): p. 1535-43.
124.Moon, D.O., M.O. Kim, Y.H. Choi, and G.Y. Kim, Butein sensitizes human hepatoma cells to TRAIL-induced apoptosis via extracellular signal-regulated kinase/Sp1-dependent DR5 upregulation and NF-kappaB inactivation. Mol Cancer Ther, 2010. 9(6): p. 1583-95.
125.Jeong, J.C., M.S. Kim, T.H. Kim, and Y.K. Kim, Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochem Res, 2009. 34(5): p. 991-1001.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. Part I:藉由蛋白質體分析黃蓮素誘導乳癌細胞中之毒殺性機制 Part II:糖尿病 II-I:利用蛋白質體找出第一型糖尿病血漿生物標誌分子:發現 hemopexin為第一型糖尿病患者腎病血漿中新穎性生物標誌分子 II- II:藉由蛋白質體找出第二型糖尿病患者腎病血漿中生物標誌分子
2. Rersveratrol甲基衍生物3,5,3'',4'',5''–pentamethoxystilbene (MR-5)抑制人類乳癌細胞MCF-7生長及細胞週期G1停滯之分子研究
3. 褐藻糖膠在人類乳癌細胞中藉由提升泛素化TGFβ受器降解而降低TGFβ所引起的上皮-間質轉化過程
4. Tid1, CHIP 與 ErbB2 分子的相互作用以及它們對乳癌病人的影響
5. 輻射照射引發安全蛋白缺失之乳癌細胞老化其細胞間及分子機制之研究
6. 乳癌細胞存活機制之探討
7. 探討MCF-7乳癌細胞中常態堆積之XIAP:p19/p12-Casp7複合體作為I-Lys標靶
8. 肝細胞生長因子缺失體轉染乳癌細胞株的蛋白質體分析
9. 人體C1酯酶抑制蛋白對乳癌細胞增生與遷移的影響
10. 天然化合物致敏劑促進乳癌細胞MCF-7及MDA-MB-231之細胞凋亡
11. 癌症標靶材料作用於細胞與分子機制之探討:1.多光子趨動標靶化奈米鑽石誘發癌細胞死亡之機制;2.anti-CEACAM6與anti-HER-2單一抗原結合功能區抗體於乳癌標靶治療之研究。
12. 一種新穎化合物CR-108經由含氧自由基與粒線體損傷路徑誘發人類乳癌細胞的凋亡
13. 雌激素誘導4T1乳癌細胞於小鼠體內擴散之細胞機制
14. 天然植物化合物6-shogaol與pterostilbene抑制乳癌幹細胞特性及乳癌細胞侵入轉移之研究
15. 過量表現 gelsolin 對 MDA-MB-231人類乳癌細胞內肌動蛋白絲重組和細胞增生的影響