(3.210.184.142) 您好!臺灣時間:2021/05/12 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳世家
研究生(外文):Shih-Chia
論文名稱:異黃酮biochanin與formononetin抑制肺癌細胞侵襲和移動及其相關機制探討
論文名稱(外文):Study of inhibitory effect and its mechanism of the isoflavones biochanin and formononetin on lung cancer invasion and migration
指導教授:謝易修謝易修引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:99
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癌症目前已是國人死亡的主要原因之一,而癌細胞轉移(metastasis)更是導致癌症病人死亡以及治療複雜度提昇的主要原因。近年來頗受醫學界重視研究的天然植物性異黃酮,其結構與女性雌激素相似,且被證實能發揮與雌激素類似的效果。異黃酮已被證實在抑制乳癌及前列腺癌細胞的增生及誘發細胞凋亡有相當的效果。但是對於抑制癌瘤細胞轉移能力的相關研究則尚未清楚,及其是否會抑制肺癌細胞的生長亦不明瞭。因此,針對肺癌細胞(A549 cells),選用2個常見異黃酮 (biochanin A and formononetin),探討對於抑制癌細胞增生及侵襲轉移的效果。結果發現, biochanin A在20μM的濃度下,對於肺癌細胞的侵襲/移動(invasion/migration)能力具有顯著的抑制效果(P<0.05),且當濃度高於50 μM時,對於癌細胞的存活也有顯著的抑制效果。然而formononetin則對於肺癌細胞的侵襲/移動(invasion/migration)並無良好的抑制效果,但可有效降低癌細胞的存活。以gelatin及casein zymography的分析結果,顯示biochanin A對於肺癌細胞的基質分解酵素matrix metalloproteinase (MMP)-2及urokinase-type plasminogen activator (u-PA)之酵素活性有顯著抑制的效果,針對肺癌A549細胞進一步探討biochanin A抗癌細胞轉移的機制,發現biochanin A也會抑制細胞的貼附能力。在分子機轉的相關分析中,biochanin A會造成extracellular signal-regulated kinase 1/2 (ERK 1/2)、p38MAPK及Akt的磷酸化下降。綜合以上發現, biochanin A能有效抑制肺癌細胞的增生及侵襲的能力,且MMP-2及u-PA的活性也有相當的抑制效果。並且在動物實驗中,以缺乏免疫能力的老鼠在皮下施打A549細胞株,並再第八天的時候開始每天餵食biochanin A,發現biochanin A的組別與控制組作比較其腫瘤大小有受到明顯的抑制,在未來或許可作為抑制肺癌轉移的輔助治療。

Metastasis of cancer cells, a multiple and intricate process, may complicate the clinical management and lead to a poor prognosis with tremendous impact to patients or communities. Isoflavones are a class of polyphenolic compounds found in soy and other legumes, and have been well characterized to have various bioactive properties. Several previous studies have established that isoflavones possess the propensity to anti-proliferation and induce apoptosis in breast and prostate cancer. Based on our knowledge, studies on the inhibitory effect of isoflavones on cancer cell invasion have been relatively less and it warrants a further study. In this study, we investigated the inhibitory effect of flavanone compounds, including biochanin A and formononetin, on the proliferation and metastasis of A549 lung cancer cells. The results showed that biochanin A and genistein significantly (P<0.05) reduced the invasion/migration of A5491 cells at the dose of 20 μM, while at the dose higher than 50 μM, they also significantly (P<0.05) deceased the cell viability of A549 cells. However, formononetin only exerted inhibitory effect on cell viability of A549 cells, but no-effect on cell invasion/migration. Gelatin and casein zymography analysis showed that biochanin A extensively inhibited the activities of MMP-2 and u-PA in A549 cells while formononetin didn’t affect these enzyme activities. In lung cancer A549 cells, treatment with biochanin A also reduced cell-matrix adhesion, and potently attenuated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2), p38MAPK and Akt. The anti-invasive effect of biochanin A was correlated with the inhibition of MMP-2, MMP-9 and u-PA activities, which may attributed to the down-regulation of ERK1/2, p38MAPK, and Akt pathway. Finally, an in vivo anti-tumor study using nude mice (BALB/c nu/nu) xenograft model by a subcutaneous inoculation of A549 cells was performed. The average tumor volume of treatment groups was statistically lower than that of the control group. In conclusion, biochanin A perturb the invasion capacities of lung cancer cells, thereby constituting an adjuvant treatment for metastasis control.

壹.中文摘要............1
英文摘要............3
貳.縮寫檢索表..........5
叁.序論................7
肆.研究動機...........32
伍.實驗方法與材料.....33
陸.實驗結果...........47
柒.討論...............51
捌.參考文獻...........58
玖.圖表與圖表說明.....77
拾.附圖表.............92



1.Bernards R, Weinberg RA. A progression puzzle. Nature 2002; 418, 823.
2.Hynes RO. Metastatic Potential: Generic Predisposition of the Primary Tumor or Rare, Metastatic Variants-Or Both? Cell 2003; 113, 821-823.
3.Nabeshima K, Inoue T, ShimaoY, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathology International 2002; 52, 255-264.Review.
4. Cox G,Jones JL, Walker RA,Steward WP,Byrne KJ. Angiogenesis and
non-small cell lung cancer.Lung Cancer. 2000; 27:81
5. Rintoul RC, Sethi T. The role of extracellular matrix in small-cell lung cancer.
Lancet Oncology. 2001;2:437
6. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews 2002; 52: 673-675
7. Pietta PG. Flavonoids as antioxidants. Journal of natural products 2000; 63:
1035-1042.
8. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Investigation 2003; 21: 744-757.
9. Pietta PG. Flavonoids as antioxidants. Journal of natural products 2000; 63:
1035-1042.
10. Prowse CV, Cash JD. Physiologic and pharmacologic enhancement of fibrinolysis. Seminars in Thrombosis and Hemostasis 1984; 10: 51-60.
11. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Medicinal research reviews 2003; 23: 519-534.
12. Lahiri-Chatterjee M, Katiyar SK, Mohan RR, Agarwal R. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Research 1999; 59: 622-632.
13. Tsyrlov IB, Mikhailenko VM, Gelboin HV. Isozyme- and species-specific susceptibility of cDNAexpressedCYP1A P-450s to different flavonoids. Biochim Biophys Acta 1994; 1205: 325-335.
14. Bu-Abbas A, Clifford MN, Walker R, Ioannides C. Contribution of caffeine and flavanols in the inductionof hepatic Phase II activities by green tea. Food and Chemical Toxicology 1998; 36: 617-621.
15. Sun XY, Plouzek CA, Henry JP,Wang TT, Phang JM. Increased UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin A in prostate cancer cells. Cancer Research 1998; 58: 2379-2384.
16. Tanaka T, Makita H, Ohnishi M, Mori H, Satoh K, Hara A, Sumida T, Fukutani K, Tanaka T, Ogawa H. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis in rats by flavonoids diosmin and hesperidin, each alone and in combination. Cancer Research 1997; 57: 246-252.
17. Makita H, Tanaka T, Fujitsuka H, Tatematsu N, Satoh K, Hara A, Mori H. Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin. Cancer Research 1996; 56: 4904-4909.
18. Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Research 1989; 49: 5111-5117.
19. Lin JK, Chen YC, Huang YT, Lin-Shiau SY. Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. Journal of Cell Biochemistry Supplement 1997; 28-29.
20. Weber G, Shen F, Prajda N, Yang H, Li W, Yeh A, Csokay B, Olah E, Look KY. Regulation of the signal transduction program by drugs. Advances in enzyme regulation 1997; 37: 35-55.
21. Zi X, Feyes DK, Agarwal R. Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: Induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clinical Cancer Research 1998; 4: 1055-1064
22. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, Kim TW, Lee YS, Lee SJ. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. International Journal of Oncology 2001; 19: 837-844.
23. Casagrande F, Darbon JM. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK1. Biochemical Pharmacology 2001; 61: 1205-1215.
24. Senderowicz AM. Flavopiridol. The first cyclin-dependent kinase inhibitor in human clinical trials. Investigational New Drugs 1999; 17: 313-320.
25. Jing Y, Nakaya K, Han R. Differentiation of promyelocytic leukemia cells HL-60 induced by daidzein in vitro and in vivo. Anticancer Research 1993; 13: 1049-1054.
26. Duthie SJ, Dobson VL. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. European Journal of Nutrition 1999; 38: 28-34.
27. Fotsis T, Pepper MS, Montesano R, Aktas E, Breit S, Schweigerer L, Rasku S,Wahala K, Adlercreutz H. Phytoestrogens and inhibition of angiogenesis. Bailliere’s Clinical Endocrinology and Metabolism 1998; 12: 649-666.
28. Kioka M, Hosokawa N, Komano T, Hirayoshi K, Nagata K, Ueda K. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite. FEBS Letter 1992; 301: 307-309.
29. Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, Cole SP. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Molecular pharmacology 2001; 59: 1171-1180.
30. Auli K Salakka , Tuija H Jokela and Kristiina Wahala Beilstein Multiple hydride reduction pathways in isoflavonoids Journal of Organic Chemistry 2006; 2:16 DOI:10.1186/1860-5397-2-16
31. Peeters PH, Keinan-Boker L, van der Schouw YT, Grobbee DE. Phytoestrogens and breast cancer risk: review of the epidemiological evidence. Breast Cancer Res Treat. 2003; 77: 171–183
32. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest. 2003; 21: 744–757.
33. Magee PJ, Rowland IR. Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr. 2004; 91: 513–531
34. Yamamoto S, Sobue T, Kobayashi M, Sasaki S, Tsugane S, for the Japan Public Health Center-Based Prospective Study on Cancer Cardiovascular Diseases Group. Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst. 2003; 95: 906–913
35. Keinan-Boker L, van Der Schouw YT, Grobbee DE, Peeters PH. Dietary
phytoestrogens and breast cancer risk. Am J Clin Nutr. 2004; 79: 282–288.
36. Petrakis NL, Barnes S, King EB, Lowenstein J, Wiencke J, Lee MM, Miike R, Kirk M, Coward L. Stimulatory influence of soy protein isolate on breast secretion in pre- and postmenopausal women. Cancer Epidemiol Biomarkers Prev. 1996; 5: 785–794.
37. Allred CD, Allred KF, Ju YH, Goeppinger TS, Doerge DR, Helferich WG. Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis. 2004; 25: 1649–1657.
38. Kumar NB, Cantor A, Allen K, Riccardi D, Besterman-Dahan K, Seigne J, Helal M, Salup R, Pow-Sang J. The specific role of isoflavones in reducing prostate cancer risk. Prostate. 2004; 59: 141–147.
39. Messina MJ. Emerging evidence on the role of soy in reducing prostate cancer risk. Nutr Rev. 2003; 61: 117–131.
40. Mustonen, E. A., T. Jokela, I. Saastamoinen, J. Taponen, S. Taponen,
H. Saloniemi, and K. Wahala. High serum S-equol content in red clover fed ewes:
The classical endocrine disruptor is a single enantiomer. Environ. Chem. Lett. 2006; 3:154–159.
41. Sarelli, L., M. Tuori, I. Saastamoinen, L. Syrjala-Qvist, and H. Saloniemi.
Phytoestrogen content of birdsfoot trefoil and red clover: Effects of growth stage and ensiling method. Acta Agric. Scand. Anim. Sci. 2003; 53:58–63.
42. Sivesind, E., and P. Seguin. Effects of the environment, cultivar, maturity, and preservation method on red clover isoflavone concentration. J. Agric. Food Chem. 2005; 53:6397–6402.
43. Kulling, S. E., Honig, D. M. and Metzler, M. Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J. Agric.
Food Chem. 2000; 49: 3024-3033.
44. Setchell, K. D. R., Brown, N. M. and Lydeking-Olsen, E. The clinical importance of the metabolite quol - a clue to the effectiveness of soy and its eisoflavones. J. Nutr. 2002; 132: 3577-3584.
45. Peterson T.G., Barnes S. Genistein inhibits both estrogen and growth factor stimulated proliferation of human breast cancer cells. Cell Growth Differ.
1996;7:1345–51.
46. Ogawara H, Akiyama T, Watanabe S-I, Ito N, Kobori M, Seoda Y. Inhibition of tyrosine protein kinase activity by synthetic isoflavones and flavones. J Antibiot (Tokyo) 1989;42:340–3.
47. Peterson,T.G., Guo-Ping Ji, Marion Kirk, Lori Coward, Charles N Falany, and Stephen Barnes.Metabolism of the isoflavones genistein and biochanin A in human breast cancer cell lines. Am J Clin Nutr 1998;68(suppl):1505S–11S.
48. Nestel PJ, Yamashita T, and Sashara T. Soy isoflaimprove systemic arterial compliance but not plasma lif menopausal and perimenopausal women. Anerioscler Tl Vasc Biol 1997;17:3392-3398﹒
49. Murkies A, Dalais FS,and Briganti EM. Phytoestrogen breast cancer in postmenopausal women. Acase control Menopause. 2000;7:289-296﹒
50. Kotra LP, Cross JB, Shimura Y, Fridman R, Schlegel HB, Mobashery S. Insight into the complex and dynamic process of activation of matrix metalloproteinases. Journal of the American Chemical Society 2001; 123: 3108-3113.
51. Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, Bode W. The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science 1995; 4: 823-840.
52. Stetler-Stevenson WG, Brown PD, Onisto M, Levy AT, Liotta LA. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. The Journal of Biological Chemistry 1990; 265: 13933-13938.
53. Nagase H, Woessner JF. Matrix Metalloproteinases. The Journal of Biological Chemistry 1999; 274: 21491-21494.
54. Singer CF, Kronsteiner N, Marton E, Kubista M, Cullen KJ, Hirtenlehner K, Seifert M, Kubista E. MMP-2 and MMP-9 expression in breast cancer-derived human fibroblast is differentially regulated by stromal-epithelial interaction. Breast Cancer Research and Treatment 2002; 72: 69-77.
55. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in
tumor invasion. The FASEB journal 1999; 13, 781-792.
56. Johnsen M, Lund LR, Romer J, Almholt K, Dano K. Cancer invasion and tissue
remodeling: common themes in proteolytic matrix degradation. Current opinion in cell biology 1998; 10, 667-671.
57 . Liabakk NB, Talbot I, Smith RA, Wilkinson K, Balkwill F. Matrix
metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9)type IV collagenases in colorectal cancer. Cancer Research 1996; 56, 190-196.
58. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of
metalloproteinases: structure, function, and biochemistry. Circulation Research 2003; 92(8), 827-839.
59. Palanki MS. Inhibitors of AP-1 and NF-kappa B mediated transcriptional
activation: therapeutic potential in autoimmune diseases and structural diversity. Current medicinal chemistry 2002; 9, 219-227.
60. Yoshida M, Korfhagen TR, Whitsett JA. Surfactant protein D regulates NF-kappa
B and matrix metalloproteinase production in alveolar macrophages via oxidant-sensitive pathways. Journal of immunology 2001; 166, 7514-7519.
61. Philip S, Bulbule A, Kundu GC. Osteopontin stimulates tumor growth and
activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. The Journal of biological chemistry 2001; 276, 44926-44935.
62. Aljada A, Ghanim H, Mohanty P, Hofmeyer D, Tripathy D, Dandona P.
Hydrocortisone suppresses intranuclear activator-protein-1 (AP-1) binding activity in mononuclear cells and plasma matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9). The Journal of clinical endocrinology and metabolism 2001; 86, 5988-5991.
63. Wang X, Mori T, Jung JC, Fini ME, Lo EH. Secretion of matrix
metalloproteinase-2 and -9 after mechanical trauma injury in rat cortical cultures and involvement of MAP kinase. Journal of neurotrauma 2002; 19, 615-625.
64. Pan MR, Hung WC. Nonsteroidal anti-inflammatory drugs inhibit matrix
metalloproteinase-2 via suppression of the ERK/Sp1-mediated transcription. The Journal of biological chemistry 2002; 277, 32775-32780.
65. Welch DR, Sakamaki T, Pioquinto R, Leonard TO, Goldberg SF, Hon Q, Erikson RL, Rieber M, Rieber MS, Hicks DJ, Bonventre JV, Alessandrini A. Transfection of constitutively active mitogen-activated protein/extracellular signal-regulated kinase kinase confers tumorigenic and metastatic potentials to NIH3T3 cells. Cancer Research 2000; 60, 1552-1556.
66. Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ,
Litofsky NS, Ross AH, Recht LD. Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. Journal of neurosurgery 2001; 95, 480-488.
67. Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J. Akt/PKB
promotes cancer cell invasion via increased motility and metalloproteinase production. The FASEB journal 2001; 15, 1953-1962.
68. Park BK, Zeng X, Glazer RI. Akt1 induces extracellular matrix invasion and
matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Research 2001; 61, 7647-7653.
69. Nelson AR, Fingleton B, Rothenberg ML., Matrisian LM. Matrix
metalloproteinase: biologic activity and clinical Implications. Journal of clinical oncology 2000; 18, 1135-1149.
70. HE CS, Wilhelm SM, Pentland AP, Marmer BL, Grant GA, Eisen AZ, Goldberg
GI. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proceedings of the National Academy of Sciences of the United States of America USA 1989; 86, 2632-2636.
71. Nagase H. Activation mechanisms of matrix metalloproteinases. Biological
chemistry 1997; 378, 151-60.
72. Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in tumor angiogenesis. International Journal of Cancer 2005; 115(6): 849-860.
73. Thomas GT,Lewis MP,Speight PM. Matrix metalloproteinases and oral cancer. Oral Oncol. 1999 35:227-223
74. Woessner JF. The matrix metalloproteinase family, in Parks WC, Mecham RP (eds) : Matrix Metalloproteinase. San Diego, CA, Academic Press, 1998; 1-14.
75. Harper E, Bloch KJ, Gross J. The zymogen of tadpole collagenase. Biochemistry 1971; 10: 3035-3041.
76. Bauer EA, Stricklin GP, Jeffrey JJ, Eisen AZ. Collagenase production by human skin fibroblasts. Biochemical and Biophysical Research Communications 1975; 64: 232-240.
77. Kugler A. Matrix metalloproteinases and their inhibitors. Anticancer Research 1999; 19: 1589-1592.
78. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. European Journal of Cell Biology 1997; 74: 111-122.
79. Woessner JF and Nagase H. Matrix Metalloproteinases and TIMPs. In three-dimensional structures of the MMPs and TIMPs, New York: Oxford Univ. Press, pp. 50-71, and Activation of the zymogen forms of MMPs. 2000; 72-86.
80. Murphy G, Willenbrock F. Tissue inhibitors of matrix metalloendopeptidases. Methods in Enzymology 1995; 248: 496-510.
81. Murphy G, Reynolds JJ, Hembry RM. Metalloproteinases and cancer invasion and metastasis. International Journal of Cancer 1989; 44: 757-760.
82. Murphy G, Docherty AJ. Matrix metalloproteinases and their inhibitors. American Journal of Respiratory Cell and Molecular Biology 1992; 7: 120-125.
83. Huebner K, Isobe M, Gasson JC, Golde DW, Croce CM. localization of the gene encoding erythroid-potentiating activity to chromosome region Xpll.l-Xpll.4. American Journal of Human Genetics 1986; 38: 819-826.
84. Tolley SP, Davies GJ, O''Shea M, Cockett MI, Docherty AJ, Murphy G. Crystallization and preliminary X-ray analysis of nonglycosylated tissue inhibitor of metalloproteinases-1, N30QN78Q TIMP-1. Proteins 1993; 17: 435-437.
85. Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. The FASEB Journal 1991; 5: 2145-2155.
86. Kolkenbrock H, Orgel D, Hecker A, Zimmermann J, Ulbrich N. Generation and activity of ternary gelatinase B/TTMP-1/ LMW-stromelysin-l complex. Biological Chemistry Hoppe-Seyler 1995; 376: 495-500.
87. Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. The Journal of Biological Chemistry 1992; 267: 4583-4591.
88. Johnson MD, Kim HR, Chesler L, Tsao WG, Bouck N, Polverini PJ. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. Journal of Cellular Physiology 1994; 160: 194-202.
89. Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T. Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). Biochemical and Biophysical Research Communications. 1990; 171: 1264-1271.
90. Thorgeirsson UP, Yoshiji H, Sinha CC, Gomez DE. Breast cancer: tumor neovasculature and the effect of tissue inhibitor of metailoproteinases-l (TIMP-1) on angiogenesis. In Vivo 1996; 10: 137-144.
91. Alvarez OA, Carmichael DE, DeClerck YA. Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. Journal of the National Cancer Institute 1990; 82: 589-595.
92. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM. Inhibition of invasion and metastasis in cell transfected with an inhibitor of metalloproteinases. Cancer Research 1992a; 52: 701-708.
93. Schultz RM, Silberman S, Persky B, Bajkowski AS, Carmichael DF. Inhibition of human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells. Cancer Research 1988; 48: 5539-5545.
94. Thorgeirsson UP, Liotta LA, Kalebic T, Margulies IM, Thomas K, Rios-Candelore M, Russo RG. Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. Journal of the National Cancer Institute 1982; 69: 1049-1054.
95. Flenniken AM, Williams BR. Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. Genes and Development 1990; 4: 1094-1106.
96. DeClerck YA, Szpirer C, Aly MS, Cassiman JJ, Eeckhout Y, Rousseau G. The gene for tissue inhibitor of metallo- proteinases-2 islocalized on human chromosome arm 17q25. Genomics 1992b; 14: 782-784.
97. Boone TC, Johnson MJ, DeClerck YA, Langley KE. cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases. Proceedings of the National Academy of Sciences of the United States of America 1990; 87: 2800-2804.
98. Shapiro SD, Kobayashi DK, Welgus HG. Identification of TIMP-2 in human alveolar macrophages. The Journal of Biological Chemistry 1992; 267: 13890-13894.
99. Stetler-Stevenson WG, Brown PD, Onisto M, Levy AT, Liotta LA. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. The Journal of Biological Chemistry 1990; 265: 13933-13938.
100. Apte SS, Olaen BR, Murphy G. The gene structure of tissue inhibitor of metalloproteinase (TIMP-3) and its inhibitor activities define the distinct TIMP gene family. The Journal of Biological Chemistry 1995; 270: 14313-14318.
101. Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. The Journal of Biological Chemistry 1994; 269: 9352-9360.
102. Stricklin GP, Welgus HG. Human skin fibroblast collagenases inhibitors: purification and biochemical characterization. The Journal of Biological Chemistry 1983; 258: 12252-12258.
103. Yang TT, Hawkes SP. Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 10676-10680.
104. Wick M, Burger C, BNsselbach S, Lucibello E, Muller R. A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during GI progression, mitogenic stimulation, diferentiation and senescence. The Journal of Biological Chemistry 1994; 269: 18953-18960.
105. Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. The Journal of Biological Chemistry. 1996; 271: 30375-30380.
106. Collen D. On the regulation and control of fibrinolysis. Thrombosis and Haemostasis 1980; 43: 77-89.
107. Victor WH, Hinsbergh V. Regulation of the synthesis and secretion of plasminogen activators by endothelial cells. Haemostasis 1988; 18: 307-327.
108. Mullerti S, Clemmensen I. The primary inhibitor of plasmin in human plasmin.
The Biochemical Journal 1976; 159: 545-553.
109. Andreasen PA, Georg B, Lund LR, Riccio A, Stacey SN. Plasminogen activator inhibitors : hormonally regulated serpins. Molecular and Cellular Endocrinology 1990; 68: 1-19.
110. Kruitthof EK. Plasminogen activator inhibitor type 1:biochemical , biological and clinical aspects. Fibrinolysis 1988; 2: 59-70.
111. Sprengers ED, Kluft C.Plasminogen activator inhibitors. Blood 1987; 69: 381-387.
112. Saksela O. Plasminogen activators and regulation of pericellular proteolysis. Biochimica et Biophysica Acta 1985; 823: 35-65.
113. Novokhatny VV. Domains in human plasminogen. Journal of Molecular Biology 1984; 179: 215-232.
114. Collen D and Lijnen HR. Basic and clinical aspects of fibrinolytic and thrombolysis. Blood 1991; 78: 3114-3124.
115. Wiman B. Primary structure of the B-chain of human plasmin. European Journal of Biochemistry 1977; 76: 159-165.
116. Knauper V, Murphy G. Membrane-type matrix metalloproteinases and cell surface-associated activation cascades for matrix metallo- proteinases, in parks WC, Mecham, R. P. (eds): Matrix Metallo- proteinases. San Diego, CA, Academic press. 1998; 199-218.
117. Lijnen HR. Extracellular proteolysis in the development and progression of atherosclerosis. Biochemical Society Transactions 2002; 30: 163-167.
118. Collen D and Lijnen HR. Basic and clinical aspects of fibrinolytic and thrombolysis. Blood 1991; 78: 3114-3124.
119. Banyai L, Varadi A, Patthy L. Common evolutionary origin of the fibrin-binding structure of fibronectin and tissue-type plasminogen activator. FEBS Letters 1983;
120. Prowse CV, Cash JD. Physiologic and pharmacologic enhancement of fibrinolysis. Seminars in Thrombosis and Hemostasis 1984; 10: 51-60.
121. Markwardt F, Kiocking KP. Studies on the release of plasminogen activators. Thrombosis Research 1976; 8: 217-233.
122. Dobrovolsky AB, Titaeva EV. The fibrinolysis system: regulation of activity and physiologic functions of its main components. Biochemistry 2002; 67: 99-108.
123. Hofmann GE, Glaststein I, Schatz F, Heller D, Deligdish L. Immunohistochemical localization of urokinase-type plasminogen activator and plasminogen inhibitor 1 and 2 in early implantation sites. American Journal of Obstetrics and Glynecology 1994; 170: 671-676.
124. Romer J, Bugge TH, Pyke C, Lund L, Flick MJ, Dengen JL, Dan k. Impaired wound healing in mice with a disrupted plasminogen gene. Nature Medicine 1996; 2: 287-292.
125. Dichek D, Quertermous T. Thrombin regulation the mRNA levels of the plasminogen activator and plasminogen activator inhibitor-1 in cultured human umbilical vein endothelial cells. Blood 1989; 74: 222-228.
126. Levin EG, Marotti K, L Santell. Protein kinase C and the stimulation of plasminogen activator release from human endothelial cells. Dependence on the elevation of messanger RNA. The Journal of Biological Chemistry 1989; 264: 16030-16036.
127. Kooistra TJ, Van Der Berg, Tons A. Protein kinase C and the stimulation of plasminogen activator synthesis in cultured human endothelial cells. The Biochemical Journal 1987; 247: 605-612.
128. Bajou K. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nature Medicine 1998; 4: 923-928.
129. Chapman HA. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Current Opinion in Cell Biology 1997; 9: 714-724.
130. Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K. Impaired
wound healing in mice with a disrupted plasminogen gene. Nature medicine 1996; 2, 287-292.
131. Sliva D, Rizzo MT, English D. Phosphatidylinositol 3-kinase and NF-kappaB
regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. The Journal of biological chemistry 2002; 277, 3150-3157.
132. Das R, Mahabeleshwar GH, Kundu GC. Osteopontin stimulates cell motility and
nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. The Journal of biological chemistry 2003; 278(31), 28593-28606.
133. Collen D. On the regulation and control of fibrinolysis. Thromb Haemost. 1980;
43, 77-89.
134. Kruithof EK, Vassalli JD, Schleuning WD, Mattaliano RJ, Bachmann F.
Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U-937. The Journal of biological chemistry 1986; 261, 11207-11213.
135. Schleef RR, Podor TJ, Dunne E, Mimuro J, and Loskutoff DJ. The majority of type 1 plasminogen activator inhibitor associated with cultured human endothelial cells is located under the cells and is accessible to solution-phase tissue-type plasminogen activator. J. Cell Biol. 1990; 110, 155-163
136. Kuo WH, Yang SF, Chu SC, Lu SO, Chou FP, Hsieh YS. Differential inductions of matrix metalloproteinase-2 and -9 in host tissues during the growth of ascitic sarcoma 180 cells in mice, Cancer Lett. 2003; 189,103-112.
137. Olaso E, Labrador JP, Wang L. Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J. Biol. Chem. 2002; 277, 3606-3613.
138. Attiga FA, Fernandez PM, Weeraratna AT, Manyak MJ, Patierno SR. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases, Cancer Res. 2000; 60, 4629-4637.
139. Kohno H, Taima M, Sumida T, Azuma Y, Ogawa H, Tanaka T. Inhibitory effect of mandarin juice rich in beta-cryptoxanthin and hesperidin on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary tumorigenesis in mice. Cancer Lett .2001;174, 141-150.
140. Chen PN, Hsieh YS, Chiou HL, Chu SC. Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chem Biol Interact 2005;156, 141-150.
141. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Reviems, Cancer 2002; 2: 657-672.
142. Alexandrakis, M., Letourneau, R., Kempuraj, D., Kandere-Grzybowska, K., Huang, M., Christodoulou, S., Boucher, W., Seretakis, D., and Theoharides, T. C. Flavones inhibit proliferation and increase mediator content in human leukemic mast cells (HMC-1). Eur J Haematol.2003;. 71, 448-454.
143. Berglund, P., and Landberg, G.. Cyclin e overexpression reduces infiltrative growth in breast cancer: yet another link between proliferation control and tumor invasion. Cell Cycle 2006;5, 606-609.
144. Bono, P., and Salmi, M. Cell surface adhesion molecules and cancer. Duodecim 2004;120, 1211-1218.
145. Booth, N. L., Overk, C. R., Yao, P., Totura, S., Deng, Y., Hedayat, A. S., Bolton, J. L., Pauli, G. F., and Farnsworth, N. R. Seasonal variation of red clover (Trifolium pratense L., Fabaceae) isoflavones and estrogenic activity. J Agric Food Chem 2006;54, 1277-1282.
146. Chakraborti, S., Mandal, M., Das, S., Mandal, A., and Chakraborti, T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 2003;.253, 269-285.
147. Chen, Y. C., Shen, S. C., Chow, J. M., Ko, C. H., and Tseng, S. W. Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol 2004;25,.661-670.
148. Gao J, Niwa K, Takemura M, Sun W, Onogi K, Wu Y, Seishima M, Mori H,
Tamaya T. Significant anti-proliferation of human endometrial cancer cells by combined treatment with a selective COX-2 inhibitor NS398 and specific MEK inhibitor U0126. International journal of oncology 2005; 26(3), 737-744.
149. Okamoto T, Tsuburaya A, Yanoma S, Yoshikawa T, Cho H, Takanashi Y, Noguchi
Y. Inhibition of peritoneal metastasis in an animal gastric cancer model by interferon-gamma and interleukin-2. Anticancer Research 2003;23(1A), 149-153.
150. Inoue K, Chikazawa M, Fukata S, Yoshikawa C, Shuin T. Docetaxel enhances the
therapeutic effect of the angiogenesis inhibitor TNP-470 (AGM-1470) in metastatic human transitional cell carcinoma. Clinical cancer research 2003; 9(2), 886-899.
151. Cavallaro U, Christofori G. Cell adhesion in tumor invasion and metastasis: loss
of the glue is not enough. Biochimica et biophysica acta 2001; 1552, 39-45.
152. Pei D. Matrix metalloproteinases target protease-activated receptors on the tumor
cell surface. Cancer Cell 2005; 7(3), 207-208.
153. Chang WS, Lee YJ, Lu FJ, Chiang HC. Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Reserach 1993; 13: 2165-2170.
154. Chan WS, Wen PC, Chiang HC. Structure-activity relationship of caffeic acid analogues on xanthine oxidase inhibition. Anticancer Research 1995; 15: 703-707.
155. Casagrande F, Darbon JM. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK1. Biochemical Pharmacology 2001; 61: 1205-1215.
156. Curran S and Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. European Journal of Cancer 2000; 36:1621-1630.
157. Masson V. Roles of serine proteases and matrix metalloproteinases in tumor invasion and angiogenesis. Bulletin et mémoires de l''Académie royale de médecine de Belgique 2006; 161(5): 320-326.
158. Tryggvason K, Hoyhtya M, Salo T. Proteolytic degradation of extracellular matrix in tumor invasion. Biochimica et Biophysica Acta 1987; 907: 191-217.
159. Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M. Experimental metastasis is suppressed in MMP-9-deficient mice. Clinical and Experimental Metastasis 1999; 17: 177-181.
160. Kuzuya M, Kanda S, Sasaki T, Tamaya-Mori N, Cheng XW, Itoh T, Itohara S, Iguchi A. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 2003; 108(11): 1375-1378
161. Kim J, Yu W, Kovalski K, Ossowski L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 1998; 94: 353-362.
162. Amir S, Margaryan NV, Odero-Marah V, Khalkhali-Ellis Z, Hendrix MJ. Maspin regulates hypoxia-mediated stimulation of uPA/uPAR complex in Invasive Breast Cancer Cells. Cancer Biology and Therapy 2005; 4: 400-406.
163. Yoon SO, Kim MM, Chung AS. Inhibitory effect of selenite on invasion of HT1080 tumor cells. The Journal of Biological Chemistry 2001; 276: 20085-20092.
164. Bremnes RM, Veve R, Hirsch FR, Franklin WA. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer. 2002; 36,115-124.
165. Aplin AE, Howe A, Alahari SK, Juliano RL. Signal transduction and signal
modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacological reviews 1998; 50, 197-263.
166. Hynes RO. Integrins:bidirectional, allosteric signaling machines. Cell. 2002; 110,
673-687.
167. Kim, E. J., Shin, H. K., and Park, J. H. Genistein inhibits insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells: a possible mechanism of the growth inhibitory effect of Genistein. J Med Food 2005;. 8, 431-438.
168. Klein, G., Vellenga, E., Fraaije, M. W., Kamps, W. A., and de Bont, E. S. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 2004;50, 87-100.
169. Knudsen, B. S., and Miranti, C. K. The impact of cell adhesion changes on proliferation and survival during prostate cancer development and progression. J Cell Biochem 2006; 99, 345-361.
170. Kousidou, O. C., Mitropoulou, T. N., Roussidis, A. E., Kletsas, D., Theocharis, A. D., and Karamanos, N. K. Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int J Oncol 2005;.26, 1101-1109.
171. Kumi-Diaka, J., Sanderson, N. A., and Hall, A. The mediating role of caspase-3 protease in the intracellular mechanism of genistein-induced apoptosis in human prostatic carcinoma cell lines, DU145 and LNCaP. Biol Cell 2000;. 92, 595-604.
172. Lala, G., Malik, M., Zhao, C., He, J., Kwon, Y., Giusti, M. M., and Magnuson, B. A. Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr Cancer 2006;54, 84-93.
173. Barr RK, Bogoyevitch MA. The c-Jun N-terminal proteinkinase family of
mitogen-activated protein kinases (JNK MAPKs). The international journal of biochemistry & cell biology 2001;33, 1047-1063.
174. Suthiphongchai T, Promyart P, Virochrut S, Tohtong R, Wilairat P. Involvement of ERK1/2 in invasiveness and metastatic development of rat prostatic adenocarcinoma. Oncology research 2003; 13, 253-9.
175. Maeda-Yamamoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A, Isemura M. Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. Journal of agricultural and food chemistry 2003; 51, 1858-1863.
176. Mosmann T.Rapid colormetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983;65:55-63.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔