(3.236.214.19) 您好!臺灣時間:2021/05/09 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐靜慈
研究生(外文):Ting-Tsz
論文名稱:白芍及没食子酸經由細胞週期停滯及細胞凋亡抑制膀胱癌生長
論文名稱(外文):Aqueous extract of Radix Paeoniae Alba and Gallic acid induce G2/M phase arrest and apoptosis in bladder carcinoma
指導教授:王朝鐘王朝鐘引用關係李彗禎
學位類別:博士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:141
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織報導,全球男性死於膀胱癌的人數為125,000;女性為54,000。目前使用的抗癌藥不但副作用大且具有抗藥性。傳統的中草藥一直被用來治療癌症。其具有活性物質成份,已有許多研究證實傳統中草藥可以治療惡性腫瘤。白芍 ( Radix Paeoniae Alba;RPA)為傳統中草藥,主要治療癌症。我們以HPLC分析白芍成份其含有多酚成份-没食子酸。我們研究顯示白芍 ( RPA)與沒食子酸 ( GA)可以抑制膀胱癌細胞TSGH-8301生長及OH-BBN誘導的膀胱癌生長。RPA及GA引起細胞凋亡及細胞週期停滯。其造成細胞凋亡機制是透過caspase的活化,因為caspase抑制劑降低細胞凋亡。RPA及GA引起G2/M細胞週期調控蛋白降低包括cdc2、cyclin B1、cdc25B及cdc25C。我們亦證明RPA及GA抑制細胞生長主要透過活化Cip1/p21及phosphor-chk2蛋白表現。更深入探討GA促進phospho-cdc25C ( Ser-216),其與14-3-3β結合,而由細胞核移動至細胞質。活化ATM/chk2可磷酸化cdc25C,其可能是GA造成DNA損傷,而活化H2A.X ( Ser-139)。接下來以OH-BBN誘導膀胱癌動物模式,大白鼠飲水中加入0.05 % OH-BBN持續8週,之後餵食RPA ( 0.5 or 1 g/kg)及GA ( 50 mg/kg or 150 mg/kg)至26週。結果顯示RPA及GA可以抑制OH-BBN引起的papillary/ nodular dysplasia。分析膀胱組織,結果顯示飲水加入RPA的老鼠,明顯降低Bcl2、 PCNA與cyclin D1蛋白表現,增加phospho-chk2 ( Thr-68)、Bax和Cip1/p21的表現。我們的實驗結果證明RPA和GA可能可以發展成為治療膀胱癌的藥物。

關鍵字:白芍、沒食子酸、細胞週期、細胞凋亡、膀胱癌。


The World Health Report attributes an estimated 125,000 death in males and 54,000 deaths in females worldwide as a result of urothelial carcinoma. While many anticancer agents have been used, the side effects and resistance are serious problems. Traditional herbal medicines have been used since ancient times to treat malignancies. There has been increasing interest in the biological activity of traditional medicines, and numerous studies report their clinical benefit for cancer. Radix Paeoniae Alba (RPA), is a traditional Chinese medicines, has been shown to treat malignancies. We assayed the components of RPA via determination of HPLC. The components belong to phenolic compounds- gallic acid (GA). We report that RPA and GA significantly inhibit growth of human bladder transitional carcinoma cells (TSGH-8301) and bladder cancer induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (OH-BBN). We observed that RPA and GA treatment of cell resulted induction of apoptosis and arrest in G2/M phase. This induction of apoptosis seems to be mediated via activation of caspase because N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluromethylketone significantly reduced apoptosis induced by RPA and GA. Treatment of TSGH-8301 cells with RPA and GA resulted in G2-M phase cell cycle arrest that was associated with a marked decline in protein levels of G2-M regulatory proteins including cyclin-dependent kinase 1 (cdc2), cyclin B1, cell division cycle 25B (Cdc25B) and Cdc25C. We also reported that RPA- and GA-mediated growth inhibition of TSGH-8301 cells was correlated with activation of Cip1/p21 and checkpoint kinase 2 (Chk2). Additional mechanistic studies showed that GA induces phosphorylation of Cdc25C at Ser-216. This mechanism leads to its translocation from nucleus to cytoplasm resulting in an increase binding with 14-3-3β. When treated with GA, phosphorylated Cdc25C can be activated by ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2). It might be a DNA damage response proved by Ser-139 phosphorylation of histine H2A.X. Herein, we further evaluated urinary bladder cancer by RPA and GA in a model of bladder cancer induced by OH-BBN. RPA and GA strongly arrest OH-BBN-induced tumor progression at the stage of mucosal dysplasia with a striking reduction in papillary nodular dysplasia. Analysis of tumors from RPA-treated rats showed significant decrease in the expression of Bcl2, cyclin D1, and PCNA, and increase in the expression of p-Chk2 (Thr-68), Bax, and Cip1/p21. Our data suggest that RPA could be developed as an agent against bladder cancer.

Key words: Radix Paeoniae Alba, gallic acid, cell cycle, apoptosis, OH-BBN, Chk2, ATM.


壹、 中文摘要•••••••••••••••••••1
貳、 英文摘要•••••••••••••••••••3
參、 縮寫檢索表••••••••••••••••••5
肆、 緒論•••••••••••••••••••••6
伍、 研究動機••••••••••••••••• •26
陸、 實驗材料與方法•••••••••••••• •27
柒、 實驗結果••••••••••••••••• •47
捌、 討論••••••••••••••••••• •65
玖、 參考文獻•••••••••••••••••• 71
壹拾、 圖表與說明••••••••••••••••• 92
壹拾壹、 補充數據………………………………………………130
附錄 ………………………………………………………………132
附圖及表………………………………………………………… 133



1.Ro, J. Y., Staerkel, G. A. and Ayala, A. G. (1992) Cytologic and histologic features of superficial bladder cancer. Urol. Clin. North. Am., 19, 435-453.
2.Wallace, D. M. (1988) Occupational urothelial cancer. Br. J. Urol., 61, 175-182.
3.Cohen, S. M. and Johansson, S. L. (1992) Epidemiology and etiology of bladder cancer. Urol. Clin. North. Am., 19, 421-428.
4.Lin, F. S., Hsieh, T. S., Tsai, T. C., Chiu, T. Y., Chen, J., Hsu, T.C., Chiang, W. H. and How, S. W. (1993) Clinico-patholigical study of bladder tumor. J. Urol. ROC., 4, 1064-1070.
5.Czerniak, B., Cohen, G. L., Etkind, P., Deitch, D., Simmons, H., Herz, F. and Koss, L. G. (1992) Concurrent mutations of coding and regulatory sequences of the Ha-ras gene in urinary bladder carcinomas. Hum. Pathol., 23, 1199-1204.
6.Knowles, M. A. (2007) Role of FGFR3 in urothelial cell carcinoma: biomarker and potential therapeutic target. World J. Urol., 25, 581-593.
7.Cordon-Cardo, C., Dalbagni, G., Saez, G. T., Oliva, M. R., Zhang, Z. F., Rosai, J., Reuter, V. E. and Pellicer, A. (1994) p53 mutations in human bladder cancer: genotypic versus phenotypic patterns. Int .J. Cancer, 56, 347-353.
8.Esrig, D., Spruck, C. H., 3rd, Nichols, P. W., Chaiwun, B., Steven, K., Groshen, S., Chen, S. C., Skinner, D. G., Jones, P. A. and Cote, R. J. (1993) p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am. J. Pathol., 143, 1389-1397.
9.Esrig, D., Elmajian, D., Groshen, S., Freeman, J. A., Stein, J. P., Chen, S. C., Nichols, P. W., Skinner, D. G., Jones, P. A. and Cote, R. J. (1994) Accumulation of nuclear p53 and tumor progression in bladder cancer. N. Engl. J. Med., 331, 1259-1264.
10.Schmitz-Drager, B. J., Goebell, P. J. and Heydthausen, M. (2000) p53 immunohistochemistry in bladder cancer. Combined analysis: a way to go? Urol. Oncol., 5, 204-210.
11.Rosenberg, J. E. and Hahn, W. C. (2009) Bladder cancer: modeling and translation. Genes Dev., 23, 655-659.
12.el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W. and Vogelstein, B. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell, 75, 817-825.
13.Stein, J. P., Ginsberg, D. A., Grossfeld, G. D., Chatterjee, S. J., Esrig, D., Dickinson, M. G., Groshen, S., Taylor, C. R., Jones, P. A., Skinner, D. G. and Cote, R. J. (1998) Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J. Natl. Cancer Inst., 90, 1072-1079.
14.Wu, X., Bayle, J. H., Olson, D. and Levine, A. J. (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev., 7, 1126-1132.
15.Lianes, P., Orlow, I., Zhang, Z. F., Oliva, M. R., Sarkis, A. S., Reuter, V. E. and Cordon-Cardo, C. (1994) Altered patterns of MDM2 and TP53 expression in human bladder cancer. J. Natl. Cancer Inst., 86, 1325-1330.
16.Chellappan, S. P., Hiebert, S., Mudryj, M., Horowitz, J. M. and Nevins, J. R. (1991) The E2F transcription factor is a cellular target for the RB protein. Cell, 65, 1053-1061.
17.Chatterjee, S. J., George, B., Goebell, P. J., Alavi-Tafreshi, M., Shi, S. R., Fung, Y. K., Jones, P. A., Cordon-Cardo, C., Datar, R. H. and Cote, R. J. (2004) Hyperphosphorylation of pRb: a mechanism for RB tumour suppressor pathway inactivation in bladder cancer. J. Pathol., 203, 762-770.
18.Tanaka, M., Koul, D., Davies, M. A., Liebert, M., Steck, P. A. and Grossman, H. B. (2000) MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene, 19, 5406-5412.
19.Wu, X., Obata, T., Khan, Q., Highshaw, R. A., De Vere White, R. and Sweeney, C. (2004) The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. B.J.U. Int., 93, 143-150.
20.Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., Wang, X., Shen, T. H., Matos, T., Shen, M. M., Cordon-Cardo, C. and Abate-Shen, C. (2009) Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev., 23, 675-680.
21.Cerutti, P., Hussain, P., Pourzand, C. and Aguilar, F. (1994) Mutagenesis of the H-ras protooncogene and the p53 tumor suppressor gene. Cancer Res., 54, 1934s-1938s.
22.Saito, S., Hata, M., Fukuyama, R., Sakai, K., Kudoh, J., Tazaki, H. and Shimizu, N. (1997) Screening of H-ras gene point mutations in 50 cases of bladder carcinoma. Int. J. Urol., 4, 178-185.
23.Ye, D. W., Zheng, J. F., Qian, S. X. and Ma, Y. J. (1993) Correlation between the expression of oncogenes ras and c-erbB-2 and the biological behavior of bladder tumors. Urol. Res., 21, 39-43.
24.Vageli, D., Kiaris, H., Delakas, D., Anezinis, P., Cranidis, A. and Spandidos, D. A. (1996) Transcriptional activation of H-ras, K-ras and N-ras proto-oncogenes in human bladder tumors. Cancer Lett., 107, 241-247.
25.van Rhijn, B. W., van der Kwast, T. H., Vis, A. N., Kirkels, W. J., Boeve, E. R., Jobsis, A. C. and Zwarthoff, E. C. (2004) FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res., 64, 1911-1914.
26.Schenk-Braat, E. A. and Bangma, C. H. (2005) Immunotherapy for superficial bladder cancer. Cancer Immunol. Immunother., 54, 414-423.
27.Joudi, F. N., Smith, B. J. and O''Donnell, M. A. (2006) Final results from a national multicenter phase II trial of combination bacillus Calmette-Guerin plus interferon alpha-2B for reducing recurrence of superficial bladder cancer. Urol. Oncol., 24, 344-348.
28.Stavropoulos, N. E., Hastazeris, K., Filiadis, I., Mihailidis, I., Ioachim, E., Liamis, Z. and Kalomiris, P. (2002) Intravesical instillations of interferon gamma in the prophylaxis of high risk superficial bladder cancer--results of a controlled prospective study. Scand. J. Urol. Nephrol., 36, 218-222.
29.Magno, C., Melloni, D., Gali, A., Mucciardi, G., Nicocia, G., Morandi, B., Melioli, G. and Ferlazzo, G. (2002) The anti-tumor activity of bacillus Calmette-Guerin in bladder cancer is associated with an increase in the circulating level of interleukin-2. Immunol. Lett., 81, 235-238.
30.Clinton, S. K., Canto, E. and O''Donnell, M. A. (2000) Interleukin-12. Opportunities for the treatment of bladder cancer. Urol. Clin. North. Am., 27, 147-155.
31.Serretta, V., Piazza, B., Pavone, C., Piazza, S. and Pavone-Macaluso, M. (1995) Is there a role for recombinant tumor necrosis factor alpha in the intravesical treatment of superficial bladder tumors?--a phase II study. Int. J. Urol., 2, 100-103.
32.Galsky, M. D. (2005) The role of taxanes in the management of bladder cancer. Oncologist, 10, 792-798.
33.Winquist, E., Kirchner, T. S., Segal, R., Chin, J. and Lukka, H. (2004) Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: a systematic review and meta-analysis. J. Urol., 171, 561-569.
34.Parker, L. L. and Piwnica-Worms, H. (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science, 257, 1955-1957.
35.van den Heuvel, S. and Harlow, E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 262, 2050-2054.
36.Drapkin, R., Le Roy, G., Cho, H., Akoulitchev, S. and Reinberg, D. (1996) Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc. Natl. Acad. Sci. U S A, 93, 6488-6493.
37.Borgne, A. and Meijer, L. (1996) Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition. J. Biol. Chem., 271, 27847-27854.
38.Heald, R., McLoughlin, M. and McKeon, F. (1993) Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell, 74, 463-474.
39.Kornbluth, S., Sebastian, B., Hunter, T. and Newport, J. (1994) Membrane localization of the kinase which phosphorylates p34cdc2 on threonine 14. Mol. Biol. Cell, 5, 273-282.
40.Mueller, P. R., Coleman, T. R., Kumagai, A. And Dunphy, W. G. (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science, 270, 86-90.
41.Sebastian, B., Kakizuka, A. and Hunter, T. (1993) Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc. Natl. Acad. Sci. U S A, 90, 3521-3524.
42.Villa-Moruzzi, E. (1993) Activation of the cdc25C phosphatase in mitotic HeLa cells. Biochem. Biophys. Res. Commun., 196, 1248-1254.
43.Russo, A. A., Jeffrey, P. D. and Pavletich, N. P. (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol., 3, 696-700.
44.Hass, R., Gunji, H., Hirano, M., Weichselbaum, R. and Kufe, D. (1993) Phorbol ester-induced monocytic differentiation is associated with G2 delay and down-regulation of cdc25 expression. Cell Growth Differ., 4, 159-166.
45.David-Pfeuty, T. and Nouvian-Dooghe, Y. (1996) Human cyclin B1 is targeted to the nucleus in G1 phase prior to its accumulation in the cytoplasm. Oncogene, 13, 1477-1460.
46. Pines, J. (1995) Cyclins and cyclin-dependent kinases: theme and variations. Adv. Cancer Res., 66, 181-212.
47.Rechsteiner, M. and Rogers, S. W. (1996) PEST sequences and regulation by proteolysis. Trends Biochem. Sci., 21, 267-271.
48.Darzynkiewicz, Z., Gong, J., Juan, G., Ardelt, B. and Traganos, F. (1996) Cytometry of cyclin proteins. Cytometry, 25, 1-13.
49.Kato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E. and Sherr, C. J. (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev., 7, 331-342.
50.Mudrak, I., Ogris, E., Rotheneder, H. and Wintersberger, E (1994) Coordinated trans activation of DNA synthesis- and precursor-producing enzymes by polyomavirus large T antigen through interaction with the retinoblastoma protein. Mol. Cell Biol., 14, 1886-1892.
51.Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell, 81, 323-330.
52.Malumbres, M. and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 9, 153-156.
53.Guan, K. L., Jenkins, C. W., Li, Y., Nichols, M. A., Wu, X., O''Keefe, C. L., Matera, A. G. and Xiong, Y. (1994) Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev., 8, 2939-2952.
54.Hirai, H., Roussel, M. F., Kato, J. Y., Ashmun, R. A. and Sherr, C. J. (1995) Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell Biol., 15, 2672-2681.
55.Toyoshima, H. and Hunter, T. (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell, 78, 67-74.
56.Melo, J. and Toczyski, D. (2002) A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol., 14, 237-245.
57.Paulovich, A. G., Armour, C. D. and Hartwell, L. H. (1998) The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics, 150, 75-93.
58.Longhese, M. P., Foiani, M., Muzi-Falconi, M., Lucchini, G. and Plevani, P. (1998) DNA damage checkpoint in budding yeast. EMBO J., 17, 5525-5528.
59.Shiomi, Y., Shinozaki, A., Nakada, D., Sugimoto, K., Usukura, J., Obuse, C. and Tsurimoto, T. (2002) Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes Cells, 7, 861-868.
60.Griffith, J. D., Lindsey-Boltz, L. A. and Sancar, A. (2002) Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J. Biol. Chem., 277, 15233-15236.
61.Kondo, T., Matsumoto, K. and Sugimoto, K. (1999) Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Mol. Cell Biol., 19, 1136-1143.
62.Green, C. M., Erdjument-Bromage, H., Tempst, P. and Lowndes, N. F. (2000) A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol., 10, 39-42.
63.Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K. and Sugimoto, K. (2001) Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science, 294, 867-870.
64.Melo, J. A., Cohen, J. and Toczyski, D. P. (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev., 15, 2809-2821.
65.Goldberg, M., Stucki, M., Falck, J., D''Amours, D., Rahman, D., Pappin, D., Bartek, J. and Jackson, S. P. (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature, 421, 952-956.
66.Lou, Z., Minter-Dykhouse, K., Wu, X. and Chen, J. (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature, 421, 957-961.
67.Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M. and Elledge, S. J. (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 421, 961-966.
68.Yamane, K., Wu, X. and Chen, J. (2002) A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Mol. Cell Biol., 22, 555-566.
69.Turner, N., Tutt, A. and Ashworth, A. (2004) Hallmarks of ''BRCAness'' in sporadic cancers. Nat. Rev. Cancer, 4, 814-819.
70.Mochan, T. A., Venere, M., DiTullio, R. A., Jr., Halazonetis, T. D. (2004) 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst), 3, 945-952.
71.Stucki, M. and Jackson, S. P. (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst), 3, 953-957.
72.Lukas, C., Melander, F., Stucki, M., Falck, J., Bekker-Jensen, S., Goldberg, M., Lerenthal, Y., Jackson, S. P., Bartek, J. and Lukas, J. (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J., 23, 2674-2683.
73.Perry, J. and Kleckner, N. (2003) The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell, 112, 151-155.
74.Bakkenist, C. J. and Kastan, M. B. (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421, 499-506.
75.Shiloh, Y. (1997) Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet., 31, 635-662.
76.Shiloh, Y. and Kastan, M. B. (2001) ATM: genome stability, neuronal development, and cancer cross paths. Adv. Cancer Res., 83, 209-254.
77.Cortez, D., Wang, Y., Qin, J. and Elledge, S. J. (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science, 286, 1162-1166.
78.Lim, D. S., Kim, S. T., Xu, B., Maser, R. S., Lin, J., Petrini, J. H. and Kastan, M. B. (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature, 404, 613-617.
79.Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y. and Ziv, Y. (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281, 1674-1677.
80.Cimprich, K. A., Shin, T. B., Keith, C. T. and Schreiber, S. L. (1996) cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl. Acad. Sci. U S A, 93, 2850-2855.
81.Brown, E. J. and Baltimore, D. (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev., 14, 397-402.
82.Takai, H., Tominaga, K., Motoyama, N., Minamishima, Y. A., Nagahama, H., Tsukiyama, T., Ikeda, K., Nakayama, K., Nakanishi, M. (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev., 14, 1439-1447.
83.Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F., Bradley, A., Donehower, L. A. and Elledge, S. J. (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G (2)/M DNA damage checkpoint. Genes Dev., 14, 1448-1459.
84.Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev., 15, 2177-2196.
85.Bartek, J. and Lukas, J. (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol., 13, 738-747.
86.Dulic, V., Kaufmann, W. K., Wilson, S. J., Tlsty, T. D., Lees, E., Harper, J. W., Elledge, S. J. and Reed, S. I. (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell, 76, 1013-1023.
87.Sherr, C. J. (1996) Cancer cell cycles. Science, 274, 1672-1677.
88.Deming, P. B., Flores, K. G., Downes, C. S., Paules, R. S. and Kaufmann, W. K. (2002) ATR enforces the topoisomerase II-dependent G2 checkpoint through inhibition of Plk1 kinase. J. Biol. Chem., 277, 36832-36838.
89.Gatei, M., Sloper, K., Sorensen, C., Syljuasen, R., Falck, J., Hobson, K., Savage, K., Lukas, J., Zhou, B. B., Bartek, J. and Khanna, K. K. (2003) Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J. Biol. Chem., 278, 14806-14811.
90.Kumagai, A. and Dunphy, W. G. (1999) Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev., 13, 1067-1072.
91.Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M. and Nishida, E. (1998) Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J., 17, 2728-2735.
92.oyoshima-Morimoto, F., Taniguchi, E., Shinya, N., Iwamatsu, A. and Nishida, E. (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature, 410, 215-220.
93.Paules, R. S., Levedakou, E. N., Wilson, S. J., Innes, C. L., Rhodes, N., Tlsty, T. D., Galloway, D. A., Donehower, L. A., Tainsky, M. A. and Kaufmann, W. K. (1995) Defective G2 checkpoint function in cells from individuals with familial cancer syndromes. Cancer Res., 55, 1763-1773.
94.Saraste, A. and Pulkki, K. (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res., 45, 528-537.
95.Mayer, B. and Oberbauer, R. (2003) Mitochondrial regulation of apoptosis. News Physiol. Sci., 18, 89-94.
96.Zhao, X. and Sun, Y. (2003) Analysis of Paeoniae Radix by high-performance liquid chromatography-electrospray ionization-mass spectrometry. Anal. Sci., 19, 1313- 1315.
97.Hsu, F. L., Lai, C. W. and Chang, J. T. (1997) Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora. Planta. Med., 63, 323-325.
98.Dezaki, K., Kimura, I., Miyahara, K. and Kimura, M. (1995) Complementary effects of paeoniflorin and glycyrrhizin on intracellular Ca2+ mobilization in the nerve-stimulated skeletal muscle of mice. Jpn. J. Pharmacol., 69, 281-284.
99.Tsuboi, H., Hossain, K., Akhand, A. A., Takeda, K., Du, J., Rifa''i, M., Dai, Y., Hayakawa, A., Suzuki, H. and Nakashima, I. (2004) Paeoniflorin induces apoptosis of lymphocytes through a redox-linked mechanism. J. Cell Biochem., 93, 162-172.
100.Zheng, Y. Q. and Wei, W. (2005) Total glucosides of paeony suppresses adjuvant arthritis in rats and intervenes cytokine-signaling between different types of synoviocytes. Int. Immunopharmacol., 5, 1560-1573.
101.Zhu, L., Wei, W., Zheng, Y. Q. and Jia, X. Y. (2005) Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis. Inflamm. Res., 54, 211-220.
102.Chen, G., Zhang, L. and Yang, P. (2005) Rapid determination of paeoniflorin and three sugars in Radix Paeoniae Alba by capillary electrophoresis. Anal. Sci., 21, 247-251.
103.Lee S.M., Li M.L., Tse Y.C, Leung S. C., Lee M.M., Tsui S.K., Fung K.P., Lee C.Y. and Waye M.M. (2002) Life Sci., 71, 2267-2277.
104.Tomoda M., Matsumoto K., Shimizu N., Gonda R. and Ohara N. (1993) Biol.Pharm. Bull., 16, 1207-1210.
105.Clifford, M. N. (1999) Chlorogenic acids and other cinnamates: nature, occurrence and dietary burden. J. Sci. Food Agric., 79, 362-372.
106.Clifford, M. N. and Scalbert, A. (2000) Ellagitannins, occurrence in food, bioavailability and cancer prevention. J. Sci. Food. Agric., 80, 1118-1125.
107.Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. and Pezzuto, J. M. (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218-220.
108.Adlercreutz, H. and Mazur, W. (1997) Phyto-oestrogens and Western diseases. Ann. Med., 29, 95-120.
109.Lee, E.F. (1980) Urine cytology in the diagnosis of cancer. Bulletin of the Chinese Oncology Society, 1, 30-33.
110.Veluri, R., Singh, R. P., Liu, Z., Thompson, J. A., Agarwal, R. and Agarwal, C. (2006) Fractionation of grape seed extract and identification of gallic acid as one of the major active constituents causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis, 27, 1445-1453.
111.Agarwal, C., Sharma, Y., Zhao, J. and Agarwal, R. (2000) A polyphenolic fraction from grape seeds causes irreversible growth inhibition of breast carcinoma MDA-MB468 cells by inhibiting mitogen-activated protein kinases activation and inducing G1 arrest and differentiation. Clin. Cancer Res., 6, 2921-2930.
112.Kawada, M., Ohno, Y., Ri, Y., Ikoma, T., Yuugetu, H., Asai, T., Watanabe, M. Yasuda, N., Akao, S., Takemura, G., Minatoguchi, S., Gotoh, K., Fujiwara, H. and Fukuda, K. (2001) Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anticancer Drugs, 12, 847-852.
113.Jagan, S., Ramakrishnan, G., Anandakumar, P., Kamaraj, S. and Devaki, T. (2008) Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol. Cell Biochem., 319, 51-59.
114.Li, L., Ng, T. B., Gao, W., Li, W., Fu, M., Niu, S. M., Zhao, L., Chen, R. R. and Liu, F. (2005) Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. Life Sci., 77, 230-240.
115.Raina, K., Rajamanickam, S., Deep, G., Singh, M., Agarwal, R. and Agarwal, C. (2008) Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. Mol. Cancer Ther., 7, 1258-1267.
116.Li, S. L., Song, J. Z., Choi, F. F., Qiao, C. F., Zhou, Y., Han, Q. B. and Xu, H. X. (2009) Chemical profiling of Radix Paeoniae evaluated by ultra-performance liquid chromatography/photo-diode-array/quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed Anal., 49, 253-266.
117.Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science, 266, 1821-1828.
118.Molinari, M. (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif., 33, 261-274.
119.Singh, S. V., Herman-Antosiewicz, A., Singh, A. V., Lew, K. L., Srivastava, S. K., Kamath, R., Brown, K. D., Zhang, L.and Baskaran, R. (2004). Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J. Biol. Chem., 279, 25813-25822.
120.Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1322-1326.
121.Molinari, M. (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif., 33, 261-274.
122.Agarwal, R. (2000) Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem. Pharmacol., 60, 1051-1059.
123.Matsuoka, S., Huang, M. and Elledge, S. J. (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase, Science, 282, 1893-1897.
124.Melchionna, R., Chen, X. B., Blasina, A. and McGowan, C. H. (2000) Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1, Nat. Cell Biol., 2, 762-765.
125.Shiloh, Y. (2003) ATM and related protein kinases: safeguarding genome integrity, Nat. Rev. Cancer, 3, 155-168.
126.Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. and Chen, D. J. (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks, J. Biol. Chem., 276, 42462-42467.
127.Liotta, L. A., Steeg, P. S. and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64, 327-336.
128.Klein, R. D. and Fischer, S. M. (2002) Black tea polyphenols inhibit IGF-I-induced signaling through Akt in normal prostate epithelial cells and Du145 prostate carcinoma cells. Carcinogenesis, 23, 217-221.
129.Priego, S., Feddi, F., Ferrer, P., Mena, S., Benlloch, M., Ortega, A., Carretero, J., Obrador, E., Asensi, M. and Estrela, J. M. (2008) Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol. Cancer Ther., 7, 3330-3342.
130.Madlener, S., Illmer, C., Horvath, Z., Saiko, P., Losert, A., Herbacek, I., Grusch, M., Elford, H. L., Krupitza, G., Bernhaus, A., Fritzer-Szekeres, M. and Szekeres, T. (2007) Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett., 245, 156-162.
131.Locatelli, C., Leal, P. C., Yunes, R. A., Nunes, R. J. and Creczynski-Pasa, T. B. (2009) Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death. Chem. Biol. Interact., 181, 175-184.
132.Deschner, E. E., Ruperto, J., Wong, G. and Newmark, H. L. (1991) Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis, 12, 1193-1196.
133.Hartwell, L. H. and Weinert, T. A. (1989) Checkpoints: controls that ensure the order of cell cycle events. Science, 246, 629-634.
134.McCormick, D. L., Ronan, S. S., Becci, P. J. and Moon, R. C. (1981) Influence of total dose and dose schedule on induction of urinary bladder cancer in the mouse by N-butyl-N-(4-hydroxybutyl) nitrosamine. Carcinogenesis, 2, 251-254.
135.Vermeulen, K., Berneman, Z. N. and Van Bockstaele, D. R. (2003) Cell cycle and apoptosis. Cell Prolif., 36, 165-175.
136.Vinh, P. Q., Sugie, S., Tanaka, T., Hara, A., Yamada, Y., Katayama, M., Deguchi, T. and Mori, H. (2002) Chemopreventive effects of a flavonoid antioxidant silymarin on N-butyl-N-(4-hydroxybutyl) nitrosamine-induced urinary bladder carcinogenesis in male ICR mice. Jpn J. Cancer Res., 93, 42-49.
137.Ahn, J. Y., Li, X., Davis, H. L. and Canman, C. E. (2002) Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. J. Biol. Chem., 277, 19389-19395.
138.Xu, X., Tsvetkov, L. M. and Stern, D. F. (2002) Chk2 activation and phosphorylation-dependent oligomerization. Mol. Cell Biol., 22, 4419-4432.
139.Sullivan, A., Yuille, M., Repellin, C., Reddy, A., Reelfs, O., Bell, A., Dunne, B., Gusterson, B. A., Osin, P., Farrell, P. J., Yulug, I., Evans, A., Ozcelik, T., Gasco, M. and Crook, T. (2002) Concomitant inactivation of p53 and Chk2 in breast cancer. Oncogene, 21, 1316-1324.
140.Haruki, N., Saito, H., Tatematsu, Y., Konishi, H., Harano, T., Masuda, A., Osada, H., Fujii, Y. and Takahashi, T. (2000) Histological type-selective, tumor-predominant expression of a novel CHK1 isoform and infrequent in vivo somatic CHK2 mutation in small cell lung cancer. Cancer Res., 60, 4689-4692.
141.Dong, X., Wang, L., Taniguchi, K., Wang, X., Cunningham, J. M., McDonnell, S. K., Qian, C., Marks, A. F., Slager, S. L., Peterson, B. J., Smith, D. I., Cheville, J. C., Blute, M. L., Jacobsen, S. J., Schaid, D. J., Tindall, D. J., Thibodeau, S. N. and Liu, W. (2003) Mutations in CHEK2 associated with prostate cancer risk. Am. J. Hum. Genet., 72, 270-280.
142.Liang, X., Reed, E. and Yu, J. J. (2006) Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. Int. J. Mol. Med., 17, 703-708.
143.Yang, G. Y., Liao, J., Kim, K., Yurkow, E. J. and Yang, C. S. (1998) Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols, Carcinogenesis, 19, 611-616.
144.Hillman, G. G., Forman, J. D., Kucuk, O., Yudelev, M. and Maughan, R. L. (2001) Genistein potentiates the radiation effect on prostate carcinoma cells, Clin. Cancer Res., 7, 382-390.
145.Klionsky, D. J. and Emr, S. D. (2000) Autophagy as a regulated pathway of cellular degradation. Science, 290, 1717-1721.
146.Levine, B. and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell, 6, 463-477.
147.Kanzawa, T., Kondo, Y., Ito, H., Kondo, S. and Germano, I. (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res., 63, 2103-2108.
148.Xiong, Y., Hannon, G. J., Zhang, H., Casso, D. and Kobayashi, R. (1993) p21 is a universal inhibitor of cyclin kinases, Nature, 366, 701-704.
149.Yim, D., Singh, R. P., Agarwal, C., Lee, S. and Chi, H. (2005) A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells, Cancer Res., 65, 1035-1044.
150.Polyak, K., Kato, J. Y., Solomon, M. J., Sherr, C. J. and Massague, J. (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest, Genes Dev., 8, 9-22.
151.Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z. and Shaw, A. S. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216, Science, 277, 1501-1505.
152.Abraham, R. T. (2000) Cell cycle checkpoint signaling through the ATM and ATR kinases, Genes Dev., 15, 2177-2196.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔