(3.238.173.209) 您好!臺灣時間:2021/05/08 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅佩
研究生(外文):Ya-Pei
論文名稱:結腸直腸癌腫瘤組織程式性死亡基因表現之探討
論文名稱(外文):Study of expression of programmed cell death genes in colorectal cancer tissue
指導教授:周芬碧周芬碧引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:84
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癌症的成因常是程式性死亡 (包括凋亡與自噬死亡) 的調控或
執行發生問題。程式性死亡需要許多基因的參與,而且兩種程式性死
亡途徑彼此間會互相影響,是非常複雜的過程。為了能更了解程式性
死亡在結腸直腸癌中所擔任的角色,我們使用定量PCR 陣列(RT-qPCR array) 的技術,針對由15 個結腸直腸癌的病人所取得的
15 對癌組織與配對的非癌組織,進行33 個參與在促進或抑制凋亡與
自噬死亡途徑以及生長的相關基因其mRNA 的定量分析,並以GAPDH 作為參考基因。癌組織中GAPDH mRNA 的濃度明顯高於非癌組織,平均增加4.01 倍。33 個基因中大部份基因的mRNA 含量在癌組織中亦是比較多。可是當使用GAPDH 進行校正後,癌組織中apoptosis 及autophagy的基因,除了DRAM,相對於非癌組織,皆有被顯著或非顯著的向下調節的現象。相關性分析則顯示大部分參與在同一程式性死亡途徑的基因的表現量,不論是在癌組織或非癌組織,彼此之間的關連性非常高,而且在癌組織中TNFR (apoptosis) 與Akt(autophagy) 與其他基因的相關性顯著增加。在相關性的分析上, 我們也發現,
angiogenesis 的基因以及兩個程式性死亡路徑的相關基因,在非癌組織的相關性都較癌組織還要高。而這些angiogenesis 的基因在癌組織的表現是有利於抑制細胞走向apoptosis。結果顯示,GAPDH 基因表現的程度可能是癌細胞較高代謝狀態的一種反應,而程式性死亡在癌細胞的調控應以相對值來解釋,而非以絕對值來看。所以腫瘤組織中程式性死亡的相對性抑制現象,可能有助於癌細胞的生存。而這其中由TNFR 與Akt 所傳遞的訊息,可能參與癌化過程中對程式性死亡的調控。我們的研究對於兩種程式性死亡提供新的資訊,將有助於癌症的研究,尤其是結腸直腸癌。

Cancer is often caused by disturbance in the regulation and/or execution of programmed cell death (PCD including apoptosis and autophagy) which is a complex process involving many genes and interplay between different pathways. In order to understand further the pathological roles of PCD in colorectal cancer, we used RT-qPCR array
technique to quantitatively analyze the mRNA levels of 33
apoptosis ,autophagy and angiogenesis related genes involved in pro- and anti-action of the pathways in 15 paired (tumor and non-cancerous parts)colorectal samples using GAPDH as the reference gene.In tumor tissue GAPDH mRNA content was significantly higher than that of the paired non-cancerous part with an average increased fold
of 4.01. The absolute mRNA levels for most of the 33 genes were higher in the tumor tissue also. After normalization with GAPDH Ct, the expressions of apoptosis and autophagy the related genes, except DRAM, were down-regulated in the tumor tissues statistical significantly or non-significantly. Correlation analysis revealed that the expression of most of the genes involved in the same pathway was closely related to each other in both tumor tissues and non-cancerous tissues, and that the
correlation of TNFR (in apoptosis) and Akt (in autophagy) to other genes in the same pathway was increased in tumor tissues. The correlations of the levels between angiogenesis factors and the genes of these two PCDs
were expressions of angiogenesis factors in tumor tissues are in favor of inhibiting apoptosis. Our results indicated that the level of GAPDH expression might reflect the metabolic state of cancer cells, and the regulation of PCDs in cancerous cells might have to be explained as a relative phenomenon in stead of an absolute value. The relative suppression of PCDs in tumor tissue is supposed to be in favor of cancer cell survival. Signals conducting through TNFR and Akt might contribute to the modulation of PCDs during cancerous process. Our findings provide new evidences
concerning both types of PCD that are informative to cancer research, especially in colorectal cancer.

目 錄
壹、 中文摘要…………………………………………3
貳、 英文摘要…………………………………………5
參、 縮寫檢索表………………………………………7
肆、 緒論………………………………………………9
一、結腸直腸的構造與功能…………………………9
二、結腸直腸癌之簡介………………………………9
三、結腸直腸癌之臨床症狀及診斷…………………10
四、結腸直腸癌之癌化分期…………………………11
五、結腸直腸癌之篩檢………………………………13
六、結腸直腸癌之致病機轉…………………………13
七、結腸直腸癌之治療………………………………14
八、程式性死亡………………………………………16
伍、 研究動機………………………………………21
陸、 實驗材料與方法………………………………22
柒、 實驗結果……………………………………35
一、RNA篩選和定量………………………………35
二、檢體的病歷特點分析……………………………35
三、GAPDH的表現量之分析………………………36
四、各基因表現量分析………………………………36
五、相同路徑中的不同基因間的相關性……………38
六、不同路徑中基因間的相關性……………………39
七、以病歷資料分組探討其相關性…………………42
八、免疫組織染色之結果分析………………………44
捌、討論………………………………………………45
玖、參考文獻…………………………………………53
壹拾、圖表……………………………………………62
壹拾壹、附圖表………………………………………81


1.Twomey C, McCarthy JV. Pathways of apoptosis and importance in development. J Cell Mol Med 2005;9:345-359.
2.Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL‑2 family members. Biochem Biophys Res Commun 2003;304:437-444.
3.Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003;22:8543-8567.
4.Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002;2:277-288.
5.Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 2000;113:1189-1198.
6.Kelekar A. Autophagy. Ann N Y Acad Sci 2005;1066:259-271.
7.Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003;5:539-545.
8.Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004;36:2503-2518.
9.Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy 2007;3:181-206.
10.Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000;19:5720-5728.
11.Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15:1101-1111.
12.Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004;36:2445–2462.
13.Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3''-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000;275:992-998..
14.King A, Gottlieb E. Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr Opin Cell Biol 2009;21:885-893.
15.Scarlatti F, Bauvy C, Ventruti, A, Sala G., Cluzeaud F, Vandewalle A, et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 2004;279:18384-18391.
16.Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004;11:448-457.
17.Li BX, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, et al. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009;5:303-6.
18.Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T, Wang HG. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 2008;113:2665-70.
19.Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, et al. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 2007;115:1344-9.
20.Tennant DA, Duran RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis 2009;30:1269-1280.
21.Hector S, Prehn JHM. Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review. Biochim Biophys Acta 2009;1795:117-129.
22.Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T, Wang HG. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 2008;113:2665-70.
23.Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, Yoo NJ, Lee SH. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 2007;115:1344-9.
24.Kennedy SG, Wagner AJ, Conzen SD, Jordán J, Bellacosa A, Tsichlis PN, Hay N. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes & development 1997;701-6260.
25.Moretti L, Attia A, Kim KW, Lu B. Crosstalk Between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. J Bio Chem 2006;281:36883-90.
26.Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, Lu B. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Bio Chem 2006. 48: 36883-36890.
27.Xiong HY, Guo XL, Bu XX, Zhang SS, Ma NN, Song JR, Hu F, Tao SF, Sun K, Li R, Wu MC, Wei LX. Autophagic cell death induced by 5-FU in Bax or PUMA deficient human colon cancer cell. j.canlet 2010;288:68-74.
28.Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Genetics & Development 2010;20:51-56.
29.Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005;21:20722–20729.
30.Wilkinson S, O''Prey J, Fricker M, Ryan KM. Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev 2009;23:1283-1288.
31.Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999;13:239-252.
32.Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 1999; 264:781-788.
33.Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007;129: 983-997.
34.Oh SY, Kwon HC, Kim SH, Jang JS, Kim MC, Kim KH, Han JY, Kim CO, Kim SJ, Jeong JS, Kim HJ. Clinic pathologic significance of HIF-1α, p53, and VEGF expression and preoperative serum VEGF level in gastric cancer. BMC Cancer 2008;8:2471-2407.
35.Bouleau S, Grimal H, Rincheval V, Godefroy N, Mignotte B, Vayssière JL, Renaud F. FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway. Oncogene 2005;24:7839-7849.
36.Conner EA, Teramoto T, Wirth PJ, Kiss A, Garfield S, Thorgeirsson SS. HGF-mediated apoptosis via p53 / Bax-independent pathway activating JNK1. Carcinogenesis 1999;4:583-590.
37.Li Y, Fan X, Goodwin CR, Laterra J, Xia S. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5. BMC Cancer 2008;8:1471-2407.
38.Himpe E, Degaillier C, Coppens A, Kooijman R. Insulin-like growth factor-1 delays Fas-mediated apoptosis in human neutrophils through the phosphatidylinositol-3 kinase pathway. J Endocrinol 2008;199:69-80.
39.Párrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3''-kinase and mitogen-activated protein kinase pathways. J Biol Chem 1997;272:154-161.
40.Lin MT, Juan CY, Chang KJ, Chen WJ, Kuo ML. IL-6 inhibits apoptosis and retains oxidative DNA lesions in human gastric cancer AGS cells through up-regulation of anti-apoptotic gene mcl-1. Carcinogenesis 2001; 22:1947-1953.
41.Chetty C, Bhoopathi P, Lakka SS, Rao JS. MMP-2 siRNA induced Fas/CD95-mediated extrinsic II apoptotic pathway in the A549 lung adenocarcinoma cell line. Oncogene 2007;26:7675-7683.
42.Nyormoi O, Mills L. An MMP-2/MMP-9 inhibitor, 5a, enhances apoptosis induced by ligands of the TNF receptor su. Cell Death Differ 2003;10:558-569.
43.Kim HR, Upadhyay S, Li G, Palmer KC, Deuel TF. Platelet-derived growth factor induces apoptosis in growth-arrested murine fibroblasts. Proc Natl Acad Sci USA 1995;92:9500-9504.
44.Bains M, Florez-McClure ML, Heidenreich KA. Heidenreich. insulin-like growth factor-I prevents the accumulation of autophagic vesicles and cell death in purkinje neurons by ncreasing the rate of autophagosome-to-lysosome fusion and degradation. J Biol Chem 2009;30:20398-20407.
45.Maynard AA, Dvorak K, Khailova L, Dobrenen HJ, Arganbright KM, Halpern MD, Kurundkar AR, Maheshwari A, Dvorak B. Epidermal growth factor reduces autophagy in intestinal epithelium and in the rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2010. Epub ahead of print.
46.Mei J, Gao Y, Zhang L, Cai X, Qian Z, Huang H, Huang W. VEGF-siRNA silencing induces apoptosis, inhibits proliferation and suppresses vasculogenic mimicry in osteosarcoma in vitro. Exp Oncol 2008; 1:29-34.
47.Rodriguez-Enfedaque A, Bouleau S, Laurent M, Courtois Y, Mignotte B, Vayssière JL, Renaud F. FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection. Biochimica et Biophysica Acta 2009;11:1719-1727.
48.Crighton D, Wilkinson S, O''Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis. Cell 2006;126:121-134.
49.Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 2009;16:1-10.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔