(3.236.214.19) 您好!臺灣時間:2021/05/09 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪郁翔
研究生(外文):Yu-Shiang
論文名稱:探討suramin衍生物對於nAChR 阻斷劑造成神經肌肉傳導阻斷之 保護作用
論文名稱(外文):Study the protecting effect of suramin analogues on neuromuscular transmission blockade induced by nAChR blockers
指導教授:林明忠林明忠引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:73
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
運動神經元的神經軸所傳遞的神經脈衝傳至神經肌肉接合處 (NMJ) 轉換成化學訊號,並將此訊號通過神經肌肉間隙到達突觸後肌肉膜上之nAChR (Nicotinic acetylcholine receptor),最終引發骨骼肌的收縮。已知右旋筒箭毒 (d-tubocurarne, d-TC) 是nAChR的阻斷劑,能夠有效的抑制神經引發的骨骼肌收縮、終板電位 (End-plate potentials, Epps) 與微小終板電位 (Miniature-end-plate potentials, Mepps) 之振幅。Suramin為抗錐型蟲的藥物,並且為P2嘌呤受體 (P2-purinoceptor) 的拮抗劑,而suramin與d-TC有相類似的結構。前處理suramin (100 µM) 與suramin的衍生物NF449 (100 µM) 對於d-TC (5 µM) 造成的神經引發骨骼肌收縮、Epps或是Mepps的阻斷,都有顯著的拮抗作用;而與suramin另一個衍生物NF007 (100 µM) 相較之下,沒有有效的影響d-TC造成神經肌肉之阻斷。因此,前處理suramin與NF449不僅能夠拮抗d-TC阻斷神經肌肉傳訊,並且後處理也能扭轉d-TC的阻斷,但是對於突觸後雨傘節神經蛇毒 (α-BTX) 並沒有影響。由於在小雞二頸肌實驗中,suramin和NF449能有效的拮抗d-TC抑制ACh作用於nAChR (d-TC單獨為49.8 ± 3.3 % ;前處理suramin則d-TC抑制ACh作用為 67.8 ± 3.4 %, P = 0.0001;前處理NF449則d-TC抑制ACh作用為 93.2 ± 7.5 %, P < 0.0001),結果顯示suramin與NF449能和d-TC在nAChR上競爭。除此之外,藉由肋神經-胸三角肌神經末梢電流之測定,排除了suramin與NF449對於突觸前神經軸鈉和鉀離子流的影響。這些發現顯示suramin與NF449在nAChR上,能有效的對於d-TC造成神經肌肉阻斷產生拮抗作用。我們推測此拮抗作用可能是去干擾或阻礙d-TC作用於nAChR上結合位。

Moter neurons conduct nerve impulses down an axon to the synaptic terminal to induce neurotransmitter release at the axon terminal. The neurotransmitter binds to nicotinic ACh receptor (nAChR) and eventually produce the muscle contraction. As we known a nAChR antagonist, d-tubocurarine (d-TC), can inhibit the amplitudes of nerve-evoke muscle tension, end-plate potential (epp) and miniature end-plate potential (mepp). Suramin is known as an anti-trypanosomal drug and an antagonist of P2-purinoceptor, and it’s chemical structure resembles d-TC. The pretreatment with either suramin (100 µM) or suramin analogue NF449 (100 µM) significantly antagonizes the effects of d-TC (5 µM) on the nerve-evoke muscle tension, epps and mepps. Another suramin analogues, NF007 didn’t have significant effects on neuromuscular transmission blockade induced by d-TC. However, pretreatment with suramin or NF449 does not antagonize the effects of α-bungarotoxin, can irreversible nAChR blocker. Since either suramin or NF449 is able to antagonize the inhibition on nAChR produced by d-TC in the chick biventer-cervicis muscle (d-TC alone, 49.8 ± 3.3 % of control;pretreatment with suramin and post-treatment with d-TC, 67.8 ± 3.4 % of control, P = 0.0001;pretreatment with NF449 and post-treatment with d-TC, 93.2 ± 7.5 % of control, P &lt; 0.0001), it is suggested that the effects of suramin and NF449 are to compete the d-TC binding site on the nAChR. Furthemore, we ruled out the possibility of presynaptic mechanism due to the nerve terminal waveform of triangularis sterni are not affected by suramin and NF449. Our experiments demonstrated that suramin and NF449 but not NF007 can antagonize the inhibition of neuromuscular transmission induced by d-TC. We speculated that the antagonistic effect of suramin and suramin analogues, may be to compete the d-TC binding site of nAChR.

一.中文摘要 - 3 -
二.英文摘要 - 5 -
三.序論 (Introduction) - 7 -
四.材料與方法 (Materials and Methods) - 18 -
1.小白鼠膈神經-橫膈膜之製備 - 18 -
2.小白鼠胸肋神經-三角扇形肌之製備 - 21 -
3.單離小白鼠腳趾骨骼肌細胞之製備 - 25 -
4.小雞二頸肌之製備 - 26 -
5. ACh受體螢光影像之記錄 - 27 -
6.資料分析 (Data Analysis) - 28 -
7.藥品 (Chemicals) - 28 -
五. 結果 (Results) - 30 -
Suramin及其衍生物前處理在膈神經引發橫膈肌收縮對於d-TC效的影 響 - 30 -
Suramin及其衍生物後處理在膈神經引發橫膈肌收縮對於d-TC效應的影響 - 31 -
Suramin及其衍生物在α-BTX存在下對於膈神經引發橫膈肌收縮阻斷影響 - 32 -
Suramin及其衍生物在d-TC存在下對於終板電位影響 - 33 -
Suramin及其衍生物在d-TC存在下對於微小終板電位影響 - 33 -
Suramin及其衍生物對於Acetylcholine作用於nAChR所引發二頸肌張力影響 - 34 -
Suramin及其衍生物對於肋神經-胸三角肌神經末梢電流影響 -36 -
六. 討論 (Discussion) - 37 -
Suramin及其衍生物對於聯會前作用 - 37 -
Suramin及其衍生物反向影響非去極化神經肌肉阻斷劑 -38 -
Suramin於nAChR細胞外結合位置 - 39 -
Suramin及其衍生物對於α-BTX之作用 - 40 -
Suramin與NF449對於ACh作用在二頸肌影響 - 41 -
d-TC化學結構 - 41 -
Suramin及其衍生物化學結構 - 42 -
七. 圖表 (Figures and Table) - 44 -
圖1.藉由suramin於神經引發橫膈肌收縮中對於d-TC IC50之影響-44 -
圖2.藉由NF449於神經引發橫膈肌收縮中對於d-TC IC50之影響…- 45 -
圖3.Suramin前處理會影響d-TC造成膈神經引發橫膈肌收縮之阻斷時 間 - 46 -
圖4.NF449前處理會影響d-TC造成膈神經引發橫膈肌收縮之阻斷時間- 47 -
圖5.NF007前處理不影響d-TC造成膈神經引發橫膈肌收縮之阻斷時間- 48 -
圖6.Suramin及其衍生物前處理對於d-TC造成膈神經引發橫膈肌收縮阻斷之影響 - 49 -
圖7.Suramin後處理會影響d-TC對於膈神經引發橫膈肌收縮之阻斷50 -
圖8.NF449後處理會影響d-TC對於膈神經引發橫膈肌收縮之阻斷- 51 -
圖9.Suramin與NF449在d-TC存在下對於膈神經引發橫膈肌收縮阻斷之影響- 52 -
圖10.Suramin不影響α-BTX對於膈神經引發橫膈肌收縮之阻斷 ...- 53 -
圖11.NF449不影響α-BTX存在下對於膈神經引發橫膈肌收縮之阻斷..- 54 -
圖12.Suramin與NF449會影響d-TC對於終板電位之阻斷 ……- 55 -
圖13-1.Suramin與NF449會影響d-TC對於微小終板電位之阻斷 ..- 56 -
圖13-2.Suramin與NF449會影響d-TC對於微小終板電位之阻斷…- 57 -
圖14.Acetylcholine作用於nAChR所引發二頸肌張力之影響 - 58 -
圖15.Suramin與NF449不影響Acetylcholine作用於nAChR所引發二頸肌張力 - 59 -
圖16.Suramin與NF449會影響d-TC對於Acetylcholine作用於nAChR所引發小雞二頸肌張力之阻斷 - 60 -
圖17.Suramin與NF449不影響肋神經-胸三角肌神經末梢Na+與K+電流- 61 -
八. 參考文獻 (References) - 62 -
九. 附錄 - 71 -



Abramson S. N., Li Y., Culver P. and Taylor P. (1989) An analog of lophotoxin reacts covalently with Tyr190 in the alpha-subunit of the nicotinic acetylcholine receptor. J.Biol.Chem., 264, 12666-12672.

Barstad J. A. B. and Lilleheil G. (1968) Transversely cut diaphragm preparation from rat. Arch. Int. Pharmacodyn. Ther., 175, 373-390.

Bean B. P. (1992) Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol Sci., 13, 87–90

Brigat J. L. and Mallart A. (1982) Presynaptic currents in mouse motor nerve endings. J. Physiol., 333, 619-636.

Bowman W. C. (1980) Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth. Analgesia, 59, 935-943.

Bowman W. C., Marshall I. G., Gibb A. J. and Harbone A. L. (1989) Presynaptic nicotinic autorecetors. Trends Pharmacol. Sci., 10, 136-137.

Bulbring E. (1946) Observations on the isolated phrenic nerve diaphragm preparation of the rat. Brit. J Pharmacol., 1(1): 38-61.

Carlson B. J. and Raftery M. A. (1993) Specific binding of ATP to extracellular sites on Torpedo acetylcholine receptor. Biochemistry 32, 7329.

Chang C. C., Lin S. O., Hong S. J. and Chiou L. C. (1988) Neuromuscular block by verapamil and diltiazem and inhibition of acetylcholine release. Brain Res., 454, 332-339.

Changeux J. and Edelstein S. J. (2001) Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr Opin Neurobiol., 11, 369–377.

Chaturvedi V., Donnelly-Roberts D. L. and Lentz T. L. (1993) Effects of mutations of Torpedo acetylcholine receptor alpha 1 subunit residues 184-200 on alpha-bungarotoxin binding in a recombinant fusion protein. Biochemistry., 32, 9570-9576.

Chiara D. C. and Cohen J. B. (1992) Identification of amino acids contributing to high and low affinity d-tubocurarine (dTC) sites on the Torpedo nicotinic acetylcholine receptor. Biophys. J., 61, A106.

Chiu S. Y., Ritchie J. M., Rogart R. B. and Stagg D. (1979) A quantitative description of membrane currents in rabbit myelinated nerve. J. Physiol., 292, 149-166.

Cohen J. B., Sharp S. D. and Liu W. S. (1991) Structure of the angonist-binding site of the nicotinic acetylcholine receptor. 〔3H〕 acetylcholine mustard identifies residues in the cation-binding subsite. J. Biol. Chem., 266, 23354-23364.

Cohen-Cory S. (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science., 298, 770–6.

Conti-Tronconi B. M., Hunkapiller M. W. and Raftery M. A. (1982) Subunit structure of the acetylcholine receptor from Electrophorus electricus. Proc. Nati. Acad. Sci. USA., 81, 2631-2634.

Conti-Fine B. M., Milani M. and Kaminski H. J. (2006) Myasthenia gravis: past, present, and future. J Clin Invest., 116, 2843–2854.

Dennis M., Giraudat J., Kotzyba-Hibert F., Goeldner M., Hirth C., Chang J. Y., Lazure C., Chretien M. and Changeux J. P. (1988) Amino acids of the Torpedo marmorata acetylcholine receptor subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry., 27, 2346–2357.

Den Hertog A., Van den Akker J. and Nelemans A. (1989) Suramin and the inhibitory junction potential in taenia caeci of the guinea-pig. Eur. J. Pharmacol., 173, 207–209.

Dai Z. and Peng H. B. (1993) Elevation in presynaptic Ca2+ level accom-panying initial nerve-muscle contact in tissue culture. Neuron
10, 827.

Dunn P. M. and Blakeley A. G. H., (1988) Suramin: a reversible P2 purinoceptor antagonist in mouse vas deferens. Br. J. Pharmacol., 93, 243–245.

Engel A. G. and Sine S. M. (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol., 5, 308–321.

Everett A. J., Lowe L. A. and Wilkinson S. (1970) Revision of the structures of (+)tubocurarine chloride and (+)chondrocurine. Chem. Commun., 1020-1021.

EWALD D. A. (1976) Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high energy-phosphate adenine nucleotides. Journal of Membrane Biology., 29, 47-65.

Fagerlund M. J. and Eriksson L. I. (2009) Current concepts in neuromuscular transmission. British Journal of Anaesthesia, 103 (1), 108-114.

Galzi J. L. and Changeux J. P. (1995) Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology., 34, 563–582.

Ginsborg B. L. and Warriner J. (1960) The isolated chick biventer cervicis nerve muscle preparation. Brit. J. Pharmacol., 15: 410-411.

Hamilton B. R. and Smith D. O. (1991) Autoreceptor-mediated purinergic and cholinergic inhibition of motor nerve terminal calcium currents in the rat, J. Physiol. (London) 432, 327.

Henning R. H., Nelemans A., Scaf A. H., Van Eekeren J., Agoston S. and den Hertog A. (1992a) Suramin reverses nondepolarizing neuromuscular blockade in rat diaphragm. Eur. J. Pharmacol. 216: 73-79.

Henning R. H., Nelemans A., van den Akker J. and Den Hertog A. (1992b) The nucleotide receptors on mouse C2C12 myotubes. Br. J. Pharmacol. 106: 853-858.

Henning R. H., Duin M., den Hertog A. and Nelemans A. (1993a) Characterization of P2-purinoceptor mediated cyclic AMP formation in mouse C2C12 myotubes. Br. J. Pharmacol. 110: 133-138.

Henning R. H., Duin M., Den Hertog A. and Nelemans A. (1993b) Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes. Br. J. Pharmacol. 110: 747-752.

Henning R. H., Nelemans A., Houwertjes M. and Agoston S. (1993c) Reversal by suramin of neuromuscular block produced by pancuronium in the anaesthetized rat. Br. J. Pharmacol. 108: 717-720.

Henning R. H., Rowan E. G., Braga M. F. M., Nelemans A. and Harvey A. L. (1996) The prejunctional inhibitory effect of suramin on neuromuscular transmission in vitro. Eur. J. Pharmacol. 301: 91-97.

Hourani S. M. O. and Chown J. A. (1989) The effects of some possible inhibitors of ectonucleotidases on the breakdown and pharmacological effects of ATP in the guinea pig urinary bladder. Gen. Pharmacol. 20, 177.

Huganir R. L. and Greengard P. (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron., 5, 555–567.

Igusa Y. (1988) Adenosine 5’-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotoal muscle cell. J. Physiol. (London) 405, 169.

Ishii M. and Kurachi Y. (2006) Muscarinic acetylcholine receptors. Curr Pharm Des., 12, 3573–3581.

Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L.,Wideman J., Stein S. and Karlin A. (1984) Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for acetylcholine receptor binding site. J. Biol. Chem., 259, 11662-11665.

Kasai M., Changeux J. P. and Monnerie L. (1969) In vitro interaction of 1-anilino 8 naphthalene sulfonate with excitable membranes isolated from the electric organ of Electrophorus electricus. Biochem Biophys Res Commun., 36, 420–427.

Katz B. and Miledi R. (1973) The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (Lond.), 231: 549–574.

Koirala S., Reddy L. V. and Ko C. P. (2003) Roles of glial cells in the formation, function, and maintenance of the neuromuscular junction. J Neurocytol., 32: 987–1002.

Kuffler S. W., Nicholls J. G. and Martin A. R. (1984) From neuron to brain, 2nd ed.

Lindstrom J. M. (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol., 15, 193–222.

Lindstrom J. M. (2000) Acetylcholine receptors and myasthenia. Muscle Nerve., 23, 453–477.

Lin W., Sanchez H. B., Deerinck T., Morris J. K., Ellisman M. and Lee K. F. (2000) Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Natl Acad Sci USA., 97: 1299–304.

Mallart A. (1985a) Electric current flow inside perineurial sheaths of mouse motor nerves. J. Physiol., 368, 565-575.

McArdle J., Angaut-Petit D., Mallart A., Bournaud R., Faille L. and Brigant J. L. (1981) Advantage of the triangularis sterni muscle of the mouse for investigations of synaptic phenomena. J. Neurosci. Methods., 4, 109-115.

McMahan U. J., Sanes J. R. and Marshall L. M. (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature., 271: 172–174.

Middleton R. E. and Cohen J. B. (1991) Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor:〔3H〕nicotine as a agonist photoaffinity label. Biochemistry., 30, 6987-6997.

Miledi R., Molinoff P. and Potter L. T. (1971) Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature., 229, 554–557.

Miyazawa A., Fujiyoshi Y., Stowell M. and Unwin N. (1999) Nicotinic acetylcholine receptor at 4.6 A˚ resolution: transverse tunnels in the channel wall. J Mol Biol., 288, 765–786.

Mozrzymas J. W. and Ruzzier F. (1992) ATP activates junctional and extrajunctional acetylcholine receptor channels in isolated adult rat muscle fibres. Neurosci. Lett. 139, 217.

Nakazawa K., Inoue K., Fujimori K. and Takanaka A. (1991) Effects of
ATP antagonists on purinoceptor-operated inward currents in rat
phaeochromocytoma cells. Pfluegers Arch., 418, 214–249.

Nakazawa K. (1994) ATP-activated current and its interaction with acetylcholine-activated current in rat sympathetic neurons. J. Neurosci., 14 , 740-750

Neubig R. R. and Cohen J. B. (1979) Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: agonist dose-response relations measured at second and millisecond times. Biochemistry, 18, 5464-5475.

Pedersen S. E. (1995) J. Biol. Chem., 270, 31141-31150.

Ramanathan V. K. and Hall Z. W. (1999) Altered glycosylation sites of the d subunit of the acetylcholine receptor (ACHR) reduce αδ association and receptor assembly. J Biol Chem., 274, 20513–20520.

Rochon D., Rousse I. and Robitaille R. (2001) Synapse-glia interactions at the mammalian neuromuscular junction. J Neurosci., 21: 3819–29.

Salpeter M. M. (1987) The Vertebrate Neuromuscular Junction. Alan R. Liss. New York.

Sine S. M. and Claudio T. (1991) Gamma- and delta-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. J Biol Chem., 266, 19369–19377.

Shamma M. (1972) The isoquinoline alkaloids: chemistry and pharmacology. Academic Press: New York.

Sine S. M., Ohno K., Bouzat C., Auerbach A., Milone M., Pruitt J. N. and Engel A. G. (1995) Mutation of the acetylcholine receptor ε subunit causes a slow-channel myasthenic syndrome by enhancing agonist-binding affinity. Neuron., 15, 229–239.

Smith D. O. (1991) Sources of adenosine released during neuromuscular transmission in the rat. J. Physiol. (London) 432, 343.

Smolen J. E. and Weissmann G. (1978) Mg2+-ATPase as a membrane ecto-enzym of human granulocytes: Inhibitors, activators and response to phagocytosis. Biochim. Biophys. Acta, 512, 525.

Standaert F. G. (1982) Release of transmitter at the neuromuscular junction. Br. J. Anaesth., 54, 131-145.

Surprenant A., Buell G. and North R. A. (1995) P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci., 18, 224.

Tzartos S. J. and Changeux J. P. (1983) High affinity binding of alpha-bungarotoxin to the purified alpha-subunit and to its 27,000-dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor. Requirement for sodium dodecyl sulfate. EMBO J., 2, 381-387.

Tzartos S. J., Cung M. T., Demange P., Loutrari H., Mamalaki A., Marraud M., Papadouli I., Sakarellos C. and Tsikaris V. (1991) The main immunogenic region (MIR) of the nicotinic acetylcholine receptor and the anti-MIR antibodies. Mol Neurobiol., 5, 1–29.

Tzartos S. J., Barkas T., Cung M., Mamalaki A., Marraud M., Papanastasiou D., Sakarellos C., Sakarellos-Daitsiotis M., Tsantili P. and Tsikaris V. (1998) Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev., 163, 89–120.

Uchitel O. D., Protti D. A., Sanchez V., Cherksey B. D., Sugimori M. and
Llinas R. (1992) P-type voltage-dependent calcium channel mediates
presynaptic calcium influx and transmitter release in mammalian
synapses. Proc. Natl. Acad. Sci. USA 89, 3330.

Unwin N., Miyazawa A., Li J. and Fujiyoshi Y. (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J Mol Biol., 319, 1165–1176.

Valera S., Hussy N., Evans R. J., Adami N., North R. A., Surprenant A., and Buell G. (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516.

Volknandt W. and Zimmerman H. (1986) Acetylcholine, ATP, and proteoglycan are common to synaptic vesicals isolated from the electric organs of eel and electric catfish as well as from rat diaphragm. J. Neurochem, 47, 1449.

Watters D. and Maelicke A. (1983) Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry, 22: 1811-1817.

Wess J. (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol., 10, 69–99.

Wheeler S. V., Jane S. D., Cross K. M., Chad J. E. and Foreman R. C. (1994) Membrane clustering and bungarotoxin binding by the nicotinic acetylcholine receptor: role of the beta subunit. J Neurochem., 63, 1891–1899.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔