|
Atir-Lande, A., Gildor, T., and Kornitzer, D. (2005). Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol Biol Cell 16, 2772-2785. Berman, J. (2006). Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9, 595-601. Berman, J., and Sudbery, P.E. (2002). Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3, 918-930. Bernardo, S.M., Khalique, Z., Kot, J., Jones, J.K., and Lee, S.A. (2008). Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genet Biol 45, 861-877. Cannon, R.D., Lamping, E., Holmes, A.R., Niimi, K., Tanabe, K., Niimi, M., and Monk, B.C. (2007). Candida albicans drug resistance another way to cope with stress. Microbiology 153, 3211-3217. Care, R.S., Trevethick, J., Binley, K.M., and Sudbery, P.E. (1999). The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34, 792-798. Chen, S.C., and Sorrell, T.C. (2007). Antifungal agents. Med J Aust 187, 404-409. Cheng, M.F., Yang, Y.L., Yao, T.J., Lin, C.Y., Liu, J.S., Tang, R.B., Yu, K.W., Fan, Y.H., Hsieh, K.S., Ho, M., et al. (2005). Risk factors for fatal candidemia caused by Candida albicans and non-albicans Candida species. BMC Infect Dis 5, 22. Cottier, F., and Muhlschlegel, F.A. (2009). Sensing the environment: response of Candida albicans to the X factor. FEMS Microbiol Lett 295, 1-9. Crick, F.H. (1968). The origin of the genetic code. J Mol Biol 38, 367-379. Douglas, L.M., Alvarez, F.J., McCreary, C., and Konopka, J.B. (2005). Septin function in yeast model systems and pathogenic fungi. Eukaryot Cell 4, 1503-1512. Duncker, B.P., Shimada, K., Tsai-Pflugfelder, M., Pasero, P., and Gasser, S.M. (2002). An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. Proc Natl Acad Sci U S A 99, 16087-16092. Forche, A., Alby, K., Schaefer, D., Johnson, A.D., Berman, J., and Bennett, R.J. (2008). The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6, e110. Francis, L.I., Randell, J.C., Takara, T.J., Uchima, L., and Bell, S.P. (2009). Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation. Genes Dev 23, 643-654.
Gillum, A.M., Tsay, E.Y., and Kirsch, D.R. (1984). Isolation of the Candida albicans gene for orotidine-5''-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179-182. Harkins, V., Gabrielse, C., Haste, L., and Weinreich, M. (2009). Budding Yeast Dbf4 Sequences Required for Cdc7 Kinase Activation and Identification of a Functional Relationship Between the Dbf4 and Rev1 BRCT Domains. Genetics. Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L., and Hedges, S.B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129-1133. Kaneko, A., Umeyama, T., Hanaoka, N., Monk, B.C., Uehara, Y., and Niimi, M. (2004). Tandem affinity purification of the Candida albicans septin protein complex. Yeast 21, 1025-1033. Kauffman, C.A. (2004). New antifungal agents. Semin Respir Crit Care Med 25, 233-239. Kim, J.M., Kakusho, N., Yamada, M., Kanoh, Y., Takemoto, N., and Masai, H. (2008). Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint. Oncogene 27, 3475-3482. Kumamoto, C.A., and Vinces, M.D. (2005). Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7, 1546-1554. Labib, K., and Gambus, A. (2007). A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17, 271-278. Lei, M., and Tye, B.K. (2001). Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci 114, 1447-1454. Marston, A.L. (2009). Meiosis: DDK is not just for replication. Curr Biol 19, R74-76. Masai, H., and Arai, K. (2000). Dbf4 motifs: conserved motifs in activation subunits for Cdc7 kinases essential for S-phase. Biochem Biophys Res Commun 275, 228-232. Masai, H., and Arai, K. (2002). Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 190, 287-296. Masia Canuto, M., and Gutierrez Rodero, F. (2002). Antifungal drug resistance to azoles and polyenes. Lancet Infect Dis 2, 550-563. Michel, S., Ushinsky, S., Klebl, B., Leberer, E., Thomas, D., Whiteway, M., and Morschhauser, J. (2002). Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Mol Microbiol 46, 269-280. Morgan, J. (2005). Global trends in candidemia: review of reports from 1995-2005. Curr Infect Dis Rep 7, 429-439. Moyer, S.E., Lewis, P.W., and Botchan, M.R. (2006). Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103, 10236-10241. Noble, S.M., French, S., Kohn, L.A., Chen, V., and Johnson, A.D. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42, 590-598. Ogi, H., Wang, C.Z., Nakai, W., Kawasaki, Y., and Masumoto, H. (2008). The role of the Saccharomyces cerevisiae Cdc7-Dbf4 complex in the replication checkpoint. Gene 414, 32-40. Parker, J.C., Jr., McCloskey, J.J., and Knauer, K.A. (1976). Pathobiologic features of human candidiasis. A common deep mycosis of the brain, heart and kidney in the altered host. Am J Clin Pathol 65, 991-1000. Reuss, O., Vik, A., Kolter, R., and Morschhauser, J. (2004). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119-127. Santos, M.A., and Tuite, M.F. (1995). The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 23, 1481-1486. Schaub, Y., Dunkler, A., Walther, A., and Wendland, J. (2006). New pFA-cassettes for PCR-based gene manipulation in Candida albicans. J Basic Microbiol 46, 416-429. Stillman, B. (2005). Origin recognition and the chromosome cycle. FEBS Lett 579, 877-884. Su, Z., Li, H., Li, Y., and Ni, F. (2007). Inhibition of the pathogenically related morphologic transition in Candida albicans by disrupting Cdc42 binding to its effectors. Chem Biol 14, 1273-1282. Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends Microbiol 12, 317-324. Tsuji, T., Lau, E., Chiang, G.G., and Jiang, W. (2008). The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol Cell 32, 862-869. Varrin, A.E., Prasad, A.A., Scholz, R.P., Ramer, M.D., and Duncker, B.P. (2005). A mutation in Dbf4 motif M impairs interactions with DNA replication factors and confers increased resistance to genotoxic agents. Mol Cell Biol 25, 7494-7504. Viudes, A., Peman, J., Canton, E., Ubeda, P., Lopez-Ribot, J.L., and Gobernado, M. (2002). Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur J Clin Microbiol Infect Dis 21, 767-774. Walia, A., and Calderone, R. (2008). The SSK2 MAPKKK of Candida albicans is required for oxidant adaptation in vitro. FEMS Yeast Res 8, 287-299 Wan, L., Niu, H., Futcher, B., Zhang, C., Shokat, K.M., Boulton, S.J., and Hollingsworth, N.M. (2008). Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes Dev 22, 386-397. Whiteway, M., and Bachewich, C. (2007). Morphogenesis in Candida albicans. Annu Rev Microbiol 61, 529-553. Whiteway, M., and Oberholzer, U. (2004). Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol 7, 350-357. Wilson, L.S., Reyes, C.M., Stolpman, M., Speckman, J., Allen, K., and Beney, J. (2002). The direct cost and incidence of systemic fungal infections. Value Health 5, 26-34. Wysong, D.R., Christin, L., Sugar, A.M., Robbins, P.W., and Diamond, R.D. (1998). Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 66, 1953-1961.
|