跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 16:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃士玲
研究生(外文):Shih-Ling
論文名稱:新穎生殖細胞專一性表達基因(Gcse)的表現趨勢及參與精細胞頂體生成過程之探討
論文名稱(外文):Study of expression profile of a novel germ-cell specific gene, Gcse, involved in acrosome biogenesis during mouse spermatogenesis
指導教授:王淑紅
指導教授(外文):Sue-Hong Wang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:153
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
哺乳類動物之生殖細胞發育,從生殖母細胞經由減數分裂變成單倍
體配子的過程相當複雜,其中生殖細胞專一性表達基因對於生殖細胞的發育扮演重要的角色。而為了瞭解調控生殖細胞發育的分子機制,實驗室鑑定出生殖細胞專一性表達基因-Gcse。Gcse 位於小鼠14 號染色體A3 區塊,轉錄出兩種主要的mRNA 剪輯型式: Gcse-l(1589 bp)與Gcse-s(906 bp),分別可轉譯出215 與152 個胺基酸序列。Gcse-l 與Gcse-s 蛋白的N 端118 個氨基酸組成一致,而Gcse-s 蛋白的C 端有56 個胺基酸與人類AKT2 (Protein kinase B)的催化區域高達50%的相似度。從Northern blots 與RT-PCR 實驗得知,Gcse-l 表現於睪丸與卵巢之中,Gcse-s專一地存在於睪丸組織。以RT-PCR,原位雜交與組織化學免疫染色分析不同發育時期的卵巢組織,發現Gcse-l 專一表現於卵細胞,從進入減數分裂的初級卵母細胞(primary oocyte)到成熟卵細胞(mature oocyte)皆有Gcse-l mRNA 表現,而Gcse- l 蛋白則從初級濾泡時期明顯增加,然而在受精卵中並未偵測到Gcse-l mRNA 的表現。在睪丸組織中,Gcse-l mRNA 訊號從粗絲期晚期精母細胞(pachytene spermatocytes)表現到早期單倍體圓精細胞(early round spermatids)中,而Gcse-s 只在早期的單倍體圓精細胞偵測到訊號。然而Gcse-l 與Gcse-s 的蛋白除了表現於睪丸外,其蛋白亦表現於副睪組織(成熟精子)中。藉由分離生殖細胞螢光免疫染色分析,發現Gcse-l 蛋白存在於精母細胞核內,而在減數分裂完成的單倍體精細胞中,則發現Gcse 蛋白會轉移頂體構造,與頂體標記蛋白-Lectin-PNA 訊號位置重疊。進一步利用可以進行減數分裂產生單倍體生殖細胞的精母細胞株-GC2 進行Gcse-l-EGFP 與Gcse-s-EGFP的轉殖實驗,細胞免疫螢光染色結果顯示,在初級精母細胞GC2 中,Gcse-l-EGFP 存在於細胞核之中,到了次級精母細胞GC2 階段,Gcse-l-EGFP 會由細胞核往細胞質運輸,而圓精細胞GC2 中,Gcse-l-EGFP存在於前頂體構造中,並與高基氏體、Acrosin 訊號位置重疊,而Gcse-s-EGFP 蛋白則存在圓精細胞GC2 細胞核。同時,藉由共同免疫沉澱法與免疫螢光共同染色,發現在次級精母細胞GC2 中,Gcse-l 會與磷酸化ERK1/2 結合並由細胞核往細胞質運輸,但到了成熟精子,Gcse-l 與磷酸化ERK1/2 不再有交互作用。由蛋白結構的分析發現,Gcse 蛋白具有RNA 結合區,我們推測在生殖細胞減數分裂過程中,初級精母細胞時期,Gcse-l 蛋白在核內與RNA 結合,次級精母細胞時期, 磷酸化ERK1/2協助Gcse-l 由核運輸至細胞質。待完成減數分裂後,細胞質中的Gcse-l成為成熟精細胞頂體蛋白的一部分,而Gcse-s 蛋白在圓精細胞核中除了可能與RNA 結合外,可能也具有磷酸激酶的功能。因此,Gcse 在精子形成過程之生殖細胞減數分裂及頂體生成過程可能扮演相當重要的角色。

Gametogenesis is a complicated developmental process of germ cells driving from primordial diploid cells. To understand the mechanisms controlling gametogenesis, a novel germ cell-specific gene, Gcse, which is located in mouse chromosome 14A3 with two major transcripts of Gcse-l (1589 bp) and Gcse-s (906 bp) in length, was identified. Gcse-l and Gcse-s encode 215 and 152 amino-acid proteins, respectively. The N-terminal 118 amino acids of Gcse-l and Gcse-s proteins are identical and the C-terminal 56 amino acids of Gcse-s show the maximum (50%) similarity to catalytic domain of human AKT2 protein (protein kinase B). Results of Northern blots and RT-PCR analysis revealed that Gcse-l expressed in both testes and ovaries, but Gcse-s expressed in testes only. During female gonad development, Gcse-l was detected from embryonic 13.5-day to adult and exclusively in oocytes. Results of in situ hybridization and immunohistochemistry both confirmed that Gcse-l specifically expressed in oocytes from primordial follicles to mature follicles. However, there was no Gcse-l signal in fertilized eggs. During male gonad development, Gcse-l and Gcse-s transcripts became detectable from postnatal day 15 (spermatocytes) and 21 (spermatids) and onwards, respectively. Strong Gcse-l signal started to express from late pachytene spermatocytes to early round spermatids and Gcse-s only existed in early round spermatids. However, both Gcse-l and Gcse-s proteins were existed not only in testes but in epididymis (spermatozoa). The transcription and translation of Gcse became temporally uncoupled since the elongated spermatids were transcriptional incompetently at the onset of spermiogenesis. Gcse-l proteins were consistently present in the nuclei of isolated spermatocytes by immunofluorescence analysis. Following meiosis, Gcse proteins were transferred to the Golgi complex of round spermatids, then combined to the acrosomal caps of elongated spermatids or spermatozoa by co-localized with the acrosomal marker (Lectin-PNA). Results of transfection and immunofluorescence studies indicate that Gcse-l existed in the nuclei of GC2 cells(primary spermatocyte-like). Following first meiosis, Gcse-l was translocated from nucleus to cytoplasm. In postmeiotic cells, Gcse-l proteins were detected in the proacrosomal vesicles with Golgi complex marker and proacrosomal marker(Acrosin), and Gcse-s proteins expressed in cell nucleus of spermatid. Gcse-l was associated with activated-ERK1/2 in GC2 (secondary spermatocyte-like) cells but not in spermatozoa by co-immunoprecipitation and immunocytofluorescence assay. Prediction of protein structure revealed that Gcse contains RNA binding sites, and ERK1/2 was reported to be required for translocation of RNA binding protein by phosphorylation during two meiosis divisions. We suggest that Gcse-l protein acts as RNA-binding protein in the nucleus of primary spermatocyte. Then, activated-ERK1/2 assists Gcse-l to transport form nucleus to cytoplasm in secondary spermatocyte. Finally, Gcse-l became the acrosome protein of haploid sperm cells. However, Gcse-s protein was predicted to bind to RNA in nucleus of spermatid and possess the role of protein kinase. In short, Gcse may play an important role in meiosis and be involved in acrosome biogenesis during spermiogenesis.

摘要---------------------------------------------------P.1-4
中文摘要-----------------------------------------------P.1-2
Abstract-----------------------------------------------P.3-4
序論(Introduction)----------------------------------P.5-18
材料與方法(Material and method)--------------------P.19-60
結果(Result)---------------------------------------P.61-80
討論(Discussion)-----------------------------------P.81-89
圖表(Figures)-----------------------------------P.90-P.125
參考文獻(References)---------------------------P.126-P.130
附圖-------------------------------------------- P.131-P.134
附錄圖------------------------------------------ P.135-P.139
附錄表------------------------------------------ P.140-P.151
引子附表-----------------------------------------P.152-P.153


1.de Kretser, D.M., Male infertility. Lancet, 1997. 349(9054): p. 787-90.
2.Zhao, G.Q. and D.L. Garbers, Male germ cell specification and differentiation. Dev Cell, 2002. 2(5): p. 537-47.
3.Eddy, E.M., Male germ cell gene expression. Recent Prog Horm Res, 2002. 57: p. 103-28.
4.Guo, R., et al., Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis, in Mol Reprod Dev. 2004. p. 264-72.
5.Lee, T.L., et al., Genomic landscape of developing male germ cells. Birth Defects Res C Embryo Today, 2009. 87(1): p. 43-63.
6.Schultz, N., F.K. Hamra, and D.L. Garbers, A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A, 2003. 100(21): p. 12201-6.
7.Shao-Ming Wu, V.B., Yali Chenb, Alan Lap-Yin Pang, Timothy Stitely, Peter J. Munson, Michael Yiu-Kwong Leung, Neelakanta Ravindranath, Martin Dym, Owen M. Rennert and Wai-Yee Chan, Analysis of mouse germ-cell transcriptome at different stages of spermatogenesis by SAGE: Biological significance Genomics, 2004. 84(6): p. 971-981.
8.Pang, A.L., et al., Expression profiling of purified male germ cells: stage-specific expression patterns related to meiosis and postmeiotic development. Physiol Genomics, 2006. 24(2): p. 75-85.
9.Byskov, A.G., Differentiation of mammalian embryonic gonad. Physiol Rev, 1986. 66(1): p. 71-117.
10.Dean, J., Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol, 2002. 53(1-2): p. 171-80.
11.van den Hurk, R. and J. Zhao, Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology, 2005. 63(6): p. 1717-51.
12.MacLean, G., et al., Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology, 2007. 148(10): p. 4560-7.
13.Russell L, E.R., Sinha-Hikim AP, Clegg EJ. , Histological and histopathological evaluation of the testis. 1990: Clearwater, FL: Cache River.
14.Nobuhiro Suzumori, C.Y., Martin M. Matzuk, Aleksandar Rajkovic, Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mechanisms of Development 2002. 111 p. 137-141.
15.Aleksandar Rajkovic, S.A.P., Daniel Ballow, Nobuhiro Suzumori, Martin M. Matzuk, NOBOX Deficiency Disrupts Early Folliculogenesis and Oocyte-Specific Gene Expression. SCIENCE, 2004. 305
16.Soyal, S.M., A. Amleh, and J. Dean, FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development, 2000. 127(21): p. 4645-54.
17.Liang, L., S.M. Soyal, and J. Dean, FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development, 1997. 124(24): p. 4939-47.
18.Shima, J.E., et al., The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod, 2004. 71(1): p. 319-30.
19.Yan, W., Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol, 2009. 306(1-2): p. 24-32.
20.DAVID J. DIX, J.W.A., BARBARA W. COLLINS, CHISATO MORIO, NORIKO NAKAMURA,PATRICIA POORMAN-ALLENII, EUGENIA H. GOULDING, AND E. M. EDDY, Targeted gene disruption of Hsp7O-2 results in failed meiosis,germ cell apoptosis, and male infertility. Proc. Natl. Acad. Sci., 1996. 93: p. 3264-3268.
21.Gu, C., et al., TSEG-1, a novel member of histone H2A variants, participates in spermatogenesis via promoting apoptosis of spermatogenic cells. Genomics, 2010. 95(5): p. 278-89.
22.Tardif, S., et al., Zonadhesin is essential for species specificity of sperm adhesion to the egg''s zona pellucida. J Biol Chem, 2010.
23.Abou-Haila, A. and D.R. Tulsiani, Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys, 2000. 379(2): p. 173-82.
24.O''Brien, D.A., et al., Expression of mannose 6-phosphate receptor messenger ribonucleic acids in mouse spermatogenic and Sertoli cells. Biol Reprod, 1994. 50(2): p. 429-35.
25.Toshimori, K., Maturation of mammalian spermatozoa: modifications of the acrosome and plasma membrane leading to fertilization. Cell Tissue Res, 1998. 293(2): p. 177-87.
26.Aitken, R.J., et al., Analysis of sperm function in globozoospermia: implications for the mechanism of sperm-zona interaction. Fertil Steril, 1990. 54(4): p. 701-7.
27.Holstein, A.F., et al., [Round headed spermatozoa: a cause of male infertility]. Dtsch Med Wochenschr, 1973. 98(2): p. 61-2.
28.Kullander, S. and A. Rausing, On round-headed human spermatozoa. Int J Fertil, 1975. 20(1): p. 33-40.
29.Lalonde, L., et al., Male infertility associated with round-headed acrosomeless spermatozoa. Fertil Steril, 1988. 49(2): p. 316-21.
30.Adham, I.M., K. Nayernia, and W. Engel, Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev, 1997. 46(3): p. 370-6.
31.Yao, R., et al., Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11211-6.
32.Li, Y.C., et al., Afaf, a novel vesicle membrane protein, is related to acrosome formation in murine testis. FEBS Lett, 2006. 580(17): p. 4266-73.
33.Luk, J.M., et al., Acrosome-specific gene AEP1: identification, characterization and roles in spermatogenesis. J Cell Physiol, 2006. 209(3): p. 755-66.
34.Lee, K.F., et al., Characterization of an acrosome protein VAD1.2/AEP2 which is differentially expressed in spermatogenesis. Mol Hum Reprod, 2008. 14(8): p. 465-74.
35.Sette, C., et al., Activation of the mitogen-activated protein kinase ERK1 during meiotic progression of mouse pachytene spermatocytes. J Biol Chem, 1999. 274(47): p. 33571-9.
36.Crepieux, P., et al., The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene, 2001. 20(34): p. 4696-709.
37.Miura K, I.J., Phosphorylated extracellular signal-regulated kinase 1/2 is localized to the XY body of meiotic prophase spermatocytes. Biochem Biophys Res Commun, 2006. 346(4): p. 1261-6.
38.Di Agostino, S., et al., Meiotic progression of isolated mouse spermatocytes under simulated microgravity. Reproduction, 2004. 128(1): p. 25-32.
39.Di Agostino, S., et al., The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development, 2002. 129(7): p. 1715-27.
40.Paronetto, M.P., et al., The nuclear RNA-binding protein Sam68 translocates to the cytoplasm and associates with the polysomes in mouse spermatocytes. Mol Biol Cell, 2006. 17(1): p. 14-24.
41.de Lamirande, E. and C. Gagnon, The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol Hum Reprod, 2002. 8(2): p. 124-35.
42.Hofmann, M.C., et al., Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci U S A, 1994. 91(12): p. 5533-7.
43.Loveland, K.L. and S. Schlatt, Stem cell factor and c-kit in the mammalian testis: lessons originating from Mother Nature''s gene knockouts. J Endocrinol, 1997. 153(3): p. 337-44.
44.Terribilini, M., et al., Prediction of RNA binding sites in proteins from amino acid sequence. RNA, 2006. 12(8): p. 1450-62.
45.Kumar, M., M.M. Gromiha, and G.P. Raghava, Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins, 2008. 71(1): p. 189-94.
46.Paillisson, A., et al., Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome. BMC Genomics, 2005. 6(1): p. 76.
47.Galaviz-Hernandez, C., et al., Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene, 2003. 309(2): p. 81-9.
48.Li, H., et al., A novel maternally transcribed homeobox gene, Eso-1, is preferentially expressed in oocytes and regulated by cytoplasmic polyadenylation. Mol Reprod Dev, 2006. 73(7): p. 825-33.
49.Wu, S.L., et al., Characterization of genomic structures and expression profiles of three tandem repeats of a mouse double homeobox gene: Duxbl. Dev Dyn, 2010. 239(3): p. 927-40.
50.Yoneda, Y., et al., Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct, 1999. 24(6): p. 425-33.
51.Deng., C.-F., Molecular studies of Nuclear Localization Signal by RNA interference. 2005.
52.Wahl, M.C., C.L. Will, and R. Luhrmann, The spliceosome: design principles of a dynamic RNP machine. Cell, 2009. 136(4): p. 701-18.
53.Biggiogera, M., et al., Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev, 1990. 26(2): p. 150-8.
54.Branford, W.W., et al., Spx1, a novel X-linked homeobox gene expressed during spermatogenesis. Mech Dev, 1997. 65(1-2): p. 87-98.
55.Li, Y., P. Lemaire, and R.R. Behringer, Esx1, a novel X chromosome-linked homeobox gene expressed in mouse extraembryonic tissues and male germ cells. Dev Biol, 1997. 188(1): p. 85-95.
56.Yeh, Y.C., et al., Stage-dependent expression of extra-embryonic tissue-spermatogenesis-homeobox gene 1 (ESX1) protein, a candidate marker for X chromosome-bearing sperm. Reprod Fertil Dev, 2005. 17(4): p. 447-55.
57.Olsen, J.V., et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006. 127(3): p. 635-48.
58.Li, G., et al., Downregulation of CIITA function by protein kinase a (PKA)-mediated phosphorylation: mechanism of prostaglandin E, cyclic AMP, and PKA inhibition of class II major histocompatibility complex expression in monocytic lines. Mol Cell Biol, 2001. 21(14): p. 4626-35.
59.Ashcroft, M., M.H. Kubbutat, and K.H. Vousden, Regulation of p53 function and stability by phosphorylation. Mol Cell Biol, 1999. 19(3): p. 1751-8.
60.Baert, J.L., et al., ERM transactivation is up-regulated by the repression of DNA binding after the PKA phosphorylation of a consensus site at the edge of the ETS domain. J Biol Chem, 2002. 277(2): p. 1002-12.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文