|
1.de Kretser, D.M., Male infertility. Lancet, 1997. 349(9054): p. 787-90. 2.Zhao, G.Q. and D.L. Garbers, Male germ cell specification and differentiation. Dev Cell, 2002. 2(5): p. 537-47. 3.Eddy, E.M., Male germ cell gene expression. Recent Prog Horm Res, 2002. 57: p. 103-28. 4.Guo, R., et al., Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis, in Mol Reprod Dev. 2004. p. 264-72. 5.Lee, T.L., et al., Genomic landscape of developing male germ cells. Birth Defects Res C Embryo Today, 2009. 87(1): p. 43-63. 6.Schultz, N., F.K. Hamra, and D.L. Garbers, A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A, 2003. 100(21): p. 12201-6. 7.Shao-Ming Wu, V.B., Yali Chenb, Alan Lap-Yin Pang, Timothy Stitely, Peter J. Munson, Michael Yiu-Kwong Leung, Neelakanta Ravindranath, Martin Dym, Owen M. Rennert and Wai-Yee Chan, Analysis of mouse germ-cell transcriptome at different stages of spermatogenesis by SAGE: Biological significance Genomics, 2004. 84(6): p. 971-981. 8.Pang, A.L., et al., Expression profiling of purified male germ cells: stage-specific expression patterns related to meiosis and postmeiotic development. Physiol Genomics, 2006. 24(2): p. 75-85. 9.Byskov, A.G., Differentiation of mammalian embryonic gonad. Physiol Rev, 1986. 66(1): p. 71-117. 10.Dean, J., Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol, 2002. 53(1-2): p. 171-80. 11.van den Hurk, R. and J. Zhao, Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology, 2005. 63(6): p. 1717-51. 12.MacLean, G., et al., Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology, 2007. 148(10): p. 4560-7. 13.Russell L, E.R., Sinha-Hikim AP, Clegg EJ. , Histological and histopathological evaluation of the testis. 1990: Clearwater, FL: Cache River. 14.Nobuhiro Suzumori, C.Y., Martin M. Matzuk, Aleksandar Rajkovic, Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mechanisms of Development 2002. 111 p. 137-141. 15.Aleksandar Rajkovic, S.A.P., Daniel Ballow, Nobuhiro Suzumori, Martin M. Matzuk, NOBOX Deficiency Disrupts Early Folliculogenesis and Oocyte-Specific Gene Expression. SCIENCE, 2004. 305 16.Soyal, S.M., A. Amleh, and J. Dean, FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development, 2000. 127(21): p. 4645-54. 17.Liang, L., S.M. Soyal, and J. Dean, FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development, 1997. 124(24): p. 4939-47. 18.Shima, J.E., et al., The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod, 2004. 71(1): p. 319-30. 19.Yan, W., Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol, 2009. 306(1-2): p. 24-32. 20.DAVID J. DIX, J.W.A., BARBARA W. COLLINS, CHISATO MORIO, NORIKO NAKAMURA,PATRICIA POORMAN-ALLENII, EUGENIA H. GOULDING, AND E. M. EDDY, Targeted gene disruption of Hsp7O-2 results in failed meiosis,germ cell apoptosis, and male infertility. Proc. Natl. Acad. Sci., 1996. 93: p. 3264-3268. 21.Gu, C., et al., TSEG-1, a novel member of histone H2A variants, participates in spermatogenesis via promoting apoptosis of spermatogenic cells. Genomics, 2010. 95(5): p. 278-89. 22.Tardif, S., et al., Zonadhesin is essential for species specificity of sperm adhesion to the egg''s zona pellucida. J Biol Chem, 2010. 23.Abou-Haila, A. and D.R. Tulsiani, Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys, 2000. 379(2): p. 173-82. 24.O''Brien, D.A., et al., Expression of mannose 6-phosphate receptor messenger ribonucleic acids in mouse spermatogenic and Sertoli cells. Biol Reprod, 1994. 50(2): p. 429-35. 25.Toshimori, K., Maturation of mammalian spermatozoa: modifications of the acrosome and plasma membrane leading to fertilization. Cell Tissue Res, 1998. 293(2): p. 177-87. 26.Aitken, R.J., et al., Analysis of sperm function in globozoospermia: implications for the mechanism of sperm-zona interaction. Fertil Steril, 1990. 54(4): p. 701-7. 27.Holstein, A.F., et al., [Round headed spermatozoa: a cause of male infertility]. Dtsch Med Wochenschr, 1973. 98(2): p. 61-2. 28.Kullander, S. and A. Rausing, On round-headed human spermatozoa. Int J Fertil, 1975. 20(1): p. 33-40. 29.Lalonde, L., et al., Male infertility associated with round-headed acrosomeless spermatozoa. Fertil Steril, 1988. 49(2): p. 316-21. 30.Adham, I.M., K. Nayernia, and W. Engel, Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev, 1997. 46(3): p. 370-6. 31.Yao, R., et al., Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11211-6. 32.Li, Y.C., et al., Afaf, a novel vesicle membrane protein, is related to acrosome formation in murine testis. FEBS Lett, 2006. 580(17): p. 4266-73. 33.Luk, J.M., et al., Acrosome-specific gene AEP1: identification, characterization and roles in spermatogenesis. J Cell Physiol, 2006. 209(3): p. 755-66. 34.Lee, K.F., et al., Characterization of an acrosome protein VAD1.2/AEP2 which is differentially expressed in spermatogenesis. Mol Hum Reprod, 2008. 14(8): p. 465-74. 35.Sette, C., et al., Activation of the mitogen-activated protein kinase ERK1 during meiotic progression of mouse pachytene spermatocytes. J Biol Chem, 1999. 274(47): p. 33571-9. 36.Crepieux, P., et al., The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene, 2001. 20(34): p. 4696-709. 37.Miura K, I.J., Phosphorylated extracellular signal-regulated kinase 1/2 is localized to the XY body of meiotic prophase spermatocytes. Biochem Biophys Res Commun, 2006. 346(4): p. 1261-6. 38.Di Agostino, S., et al., Meiotic progression of isolated mouse spermatocytes under simulated microgravity. Reproduction, 2004. 128(1): p. 25-32. 39.Di Agostino, S., et al., The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development, 2002. 129(7): p. 1715-27. 40.Paronetto, M.P., et al., The nuclear RNA-binding protein Sam68 translocates to the cytoplasm and associates with the polysomes in mouse spermatocytes. Mol Biol Cell, 2006. 17(1): p. 14-24. 41.de Lamirande, E. and C. Gagnon, The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol Hum Reprod, 2002. 8(2): p. 124-35. 42.Hofmann, M.C., et al., Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci U S A, 1994. 91(12): p. 5533-7. 43.Loveland, K.L. and S. Schlatt, Stem cell factor and c-kit in the mammalian testis: lessons originating from Mother Nature''s gene knockouts. J Endocrinol, 1997. 153(3): p. 337-44. 44.Terribilini, M., et al., Prediction of RNA binding sites in proteins from amino acid sequence. RNA, 2006. 12(8): p. 1450-62. 45.Kumar, M., M.M. Gromiha, and G.P. Raghava, Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins, 2008. 71(1): p. 189-94. 46.Paillisson, A., et al., Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome. BMC Genomics, 2005. 6(1): p. 76. 47.Galaviz-Hernandez, C., et al., Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene, 2003. 309(2): p. 81-9. 48.Li, H., et al., A novel maternally transcribed homeobox gene, Eso-1, is preferentially expressed in oocytes and regulated by cytoplasmic polyadenylation. Mol Reprod Dev, 2006. 73(7): p. 825-33. 49.Wu, S.L., et al., Characterization of genomic structures and expression profiles of three tandem repeats of a mouse double homeobox gene: Duxbl. Dev Dyn, 2010. 239(3): p. 927-40. 50.Yoneda, Y., et al., Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct, 1999. 24(6): p. 425-33. 51.Deng., C.-F., Molecular studies of Nuclear Localization Signal by RNA interference. 2005. 52.Wahl, M.C., C.L. Will, and R. Luhrmann, The spliceosome: design principles of a dynamic RNP machine. Cell, 2009. 136(4): p. 701-18. 53.Biggiogera, M., et al., Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev, 1990. 26(2): p. 150-8. 54.Branford, W.W., et al., Spx1, a novel X-linked homeobox gene expressed during spermatogenesis. Mech Dev, 1997. 65(1-2): p. 87-98. 55.Li, Y., P. Lemaire, and R.R. Behringer, Esx1, a novel X chromosome-linked homeobox gene expressed in mouse extraembryonic tissues and male germ cells. Dev Biol, 1997. 188(1): p. 85-95. 56.Yeh, Y.C., et al., Stage-dependent expression of extra-embryonic tissue-spermatogenesis-homeobox gene 1 (ESX1) protein, a candidate marker for X chromosome-bearing sperm. Reprod Fertil Dev, 2005. 17(4): p. 447-55. 57.Olsen, J.V., et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006. 127(3): p. 635-48. 58.Li, G., et al., Downregulation of CIITA function by protein kinase a (PKA)-mediated phosphorylation: mechanism of prostaglandin E, cyclic AMP, and PKA inhibition of class II major histocompatibility complex expression in monocytic lines. Mol Cell Biol, 2001. 21(14): p. 4626-35. 59.Ashcroft, M., M.H. Kubbutat, and K.H. Vousden, Regulation of p53 function and stability by phosphorylation. Mol Cell Biol, 1999. 19(3): p. 1751-8. 60.Baert, J.L., et al., ERM transactivation is up-regulated by the repression of DNA binding after the PKA phosphorylation of a consensus site at the edge of the ETS domain. J Biol Chem, 2002. 277(2): p. 1002-12.
|