跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林伯霖
研究生(外文):Po-Lin
論文名稱:p53 失去活性轉錄活化 Nrf2 轉錄表現促進肺腫瘤發展以及患者有較差疾病復發之存活率
論文名稱(外文):Nrf2 transcriptional activation by p53 dysfunction promotes tumor progression and associated with poor relapse free survival in lung cancer
指導教授:李輝李輝引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學分子毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:85
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Nrf2-Keap1 訊息傳遞路徑所調控的抗氧化與 Phase II 解毒基因對於腫瘤形成可能扮演很重要的角色。有研究顯示肺癌患者之 Nrf2 和 Keap1 基因會發生突變,這些突變促進了 Nrf2 往核內的轉移並活化 ARE 調控之下游基因的表現。這些研究也顯示 Nrf2-Keap1 路徑的活化可能參與腫瘤的發展,並增加腫瘤細胞對 cisplatin 的抗性且使得患者有較差的預後。本研究之初步結果顯示, HPV16 E6-positive TL-1 肺腺癌細胞之 Nrf2 和 GPx1 mRNA 表現較 E6-negative TL-4 細胞為高。推測 HPV透過 E6 降解 p53 增加 Nrf2 轉錄上的表現活化 Nrf2-Keap1 路徑,進而促進了腫瘤的發展與較差的臨床結果。為了證實此一假設,本研究首先在 TL-1 與 TL-4細胞中,分別轉染 E6 shRNA 和 E6 cDNA plasmid 來抑制或過度表現 E6 。發現 Nrf2 的 mRNA 與蛋白表現量在 TL-1 抑制 E6 時有顯著的上升;在 TL-4表現 E6 時則有顯著的減少。而 Nrf2-Keap1 下游調控的 GPx1 基因也有相同的結果。這表示 E6 參與了 Nrf2 在轉錄上的表現並且能活化 Nrf2-Keap1 下游的訊息傳遞路徑。為了進一步的探討 E6 如何調控 Nrf2 ,本研究設計了三段不同的啟動子片段載體,並且轉染入 TL-1 細胞與抑制 E6 之 TL-1 細胞。 Luciferase reporter assay 結果發現若將 -1036/-1啟動子片段定義有100% 之轉錄活性,則 -740/-1啟動子片段的活性約為80%,相對於 -229/-1明顯較高 (84.2% vs. 33.4% for TL-1 cells; 87.4% vs. 37.5% for E6-knockdown TL-1 cells) 。此結果顯示 p53 與 Sp1 所在的 -740~-229 啟動子片段在 Nrf2 的轉錄調控上可能扮演了很重要的角色。進一步的了解 p53 對於 Nrf2 的調控,本研究在 A549 和 p53 null 的 H1299 肺癌細胞株中分別抑制 p53 或轉染正常 (wild-type) p53 cDNA 載體。Luciferase reporter assay 結果發現 -740/-1 啟動子片段的活性在過度表現 p53 的 H1299 細胞中明顯的下降,而在抑制 p53 表現的 A549 細胞中則有明顯的上升。ChIP 的結果顯示將 p53轉染至 H1299 細胞中,p53 蛋白的確會與 Nrf2啟動子上的結合位結合。並且 Sp1 的結合能力在 H1299 轉染 p53 的細胞中則明顯的減少。此一結果顯示 p53 能透過減少 Sp1 對 Nrf2 啟動子的結合能力來抑制 Nrf2 的轉錄表現。為了進一步證實 E6 透過降解 p53增加 Nrf2 表現而促進腫瘤的生長,本研究利用細胞倍增時間分析與群落形成分析結果發現當 TL-1 分別轉染 1 μg 或 5 μg 的 shNrf2 時,其倍增時間從21.8小時增加為 25.5 與 32.8 小時。相反的,在TL-4 分別轉染 1 μg 或 5 μg 的 Nrf2 載體時,其倍增時間從 28.3 小時減少為 25.7 與 30.8 小時。在菌落形成分析中也有類似結果,細胞形成群落的能力會因轉染 shE6 和 E6 載體而改變。本研究結果與過去的研究相符,因此推測 Nrf2 轉錄活化會促進肺癌細胞生長。在肺癌患者的 Nrf2 的組織免疫染色實驗中,結果發現在 p53 突變之患者較 p53 沒有突變之患者,有較高之 Nrf2 表現的趨勢。在本研究室過去的研究發現,在167個肺癌患者中 Nrf2 蛋白的表現在 OS 中有較差的預後。為了進一步了解 E6 與 p53 突變對於這167個肺癌病患在 OS 上的影響,本研究利用多變相分析結果發現; Nrf2 表現同時 E6 表現與 p53 突變之患者較 Nrf2 沒有表現同時 E6 不表現與 p53 沒有突變之患者,有顯著較高的風險 (RR = 2.052, 95% CI = 1.110-3.793, P = 0.022;RR = 2.014, 95% CI = 1.127-3.600, P = 0.018) 。為了進一步驗證 Nrf2 在 RFS 上的影響,本研究利用167位患者中131 個具有 RFS 資料的患者經由多變相分析發現, Nrf2 可以做為肺癌中 RFS 上的獨立指標 (RR = 1.609, 95% CI = 1.077-2.433, P = 0.040) 。總之,本研究首次發現 p53 能透過降低 Sp1 與 Nrf2 啟動子的結合能力抑制 Nrf2 之轉錄表現。因此本研究推測E6 會經由抑制 p53 蛋白活性而活化 Nrf2-Keap1 路徑和促進肺癌細胞的生長,因而導致肺癌患者有較差的 OS 和 RFS。

Antioxidant and Phase II detoxification genes regulated by Nrf2-Keap1 signaling pathway may play an important role in lung tumorigenesis. Mutations of Keap1 and Nrf2 genes have been found in lung tumors and both gene mutations increased Nrf2 nuclear translocation to upregulate ARE-response gene expressions. These studies also showed that activation of Nrf2-Keap1 signaling pathway may promote tumor progression, and patients with poorer prognosis and resistance to cisplatin. Our preliminary data showed that Nrf2 and GPx1 mRNA expression levels in HPV16 E6-positive TL-1 lung cancer cells were higher than in HPV16 E6-negative TL-4 cells. This observation prompts us to question whether HPV16 E6 could upregulate Nrf2 transcription via p53 dysfunction by E6 to activate Nrf2-Keap1 signaling pathway and then promote tumor progression and patients with poor clinical outcome. To verify the hypothesis, TL-1 and TL-4 cells were knocked down and overexpressed E6 by transfected with E6 shRNA and E6 cDNA plasmid, respectively. Nrf2 mRNA expression levels were significantly decreased in E6-knockdown TL-1 cells and increased in E6-overexpressed TL-4 cells. Meanwhile, Nrf2-Keap1 signaling pathway regulated GPx mRNA expression levels were concomitantly in decreased TL-1 cells and increased in TL-4 cells, suggesting that E6 is involved in Nrf2 trnascription and may activate Nrf2-Keap1 signaling pathway. To further explore E6 how to regulate Nrf2 transcription, three promoter fragments of Nrf2 were constructed by PCR and deletion mutation and transfected into TL-1 cells with or without E6 RNAi. Luciferase reporter assay indicated that -740/-1 fragment was about 80% reporter activity of -1036/-1 full length fragment (100%), however the reporter activity of -740/-1 was significantly higher than that of -229/-1 fragment (84.2% vs. 33.4% for TL-1 cells; 87.4% vs. 37.5% for E6-knockdown TL-1 cells). This result suggests that p53 and Sp1 binding site on -740~-229 promoter region may play an important role in Nrf2 transcription. To verify whether p53 may play a role in Nrf2 transcription, p53 null H1299 and A549 lung cancer cells were transfected with wild-type p53 cDNA plasmid and p53 shRNA, respectively. Luciferase reporter assay showed that the reporter activity of -740/-1 was significantly decreased by wild-type p53 overexpressed H1299 cells and increased by p53-knockdwon in A549 cells. ChIP assay further indicated that the binding ability of p53 on its binding site of -740~-229 promoter region was decreased in p53-overexpressed H1299 cells. Additionally, Sp1 binding ability was markedly decreased by p53 overexpression in H1299 cells. These results suggest that p53 may suppress Nrf2 transcription via decreased Sp1 biniding ability on Nrf2 promoter. To further verify whether Nrf2 upregulated by E6 via p53 derepression to promote cell growth, doubling time and colony formation assay were performed. Our data showed that the doubling time of TL-1 cells was increased from 21.8 hr to 25.5 and 32.8 hr after the cells were transfected with 1μg and 5 μg shNrf2. Conversely, the doubling time of TL-4 cells were decreased from 28.3 hr to 25.7 and 20.8 hr after the cells were transfected with Nrf2 cDNA plasmid. Similar observations were also seen in colony formation efficacy in both cells changed by shE6 and E6 cDNA plasmid transfection. These results were consistent with previous reports indicating that Nrf2 may promote lung cancer cell growth. Immunohistochemical data showed that tumors with p53 mutation tended to have higher Nrf2 expression compared with those with wild-type p53. Our previous data showed that Nrf2 protein expression may be associated with OS 167 lung cancer patients. To further verify whether the combination effects of E6 or p53 mutation on OS 167 lung cancer patient, multivariate Cox regression analysis was performed, and our data indicated that E6 or p53 mutation in lung tumors synergistically increased the hazard ratio to 2.052 (95% CI = 1.110-3.793, P = 0.022) and 2.014 (95% CI = 1.127-3.600, P = 0.018) as compared with those with Nrf2 negative + E6 negative or p53 wild-type. To further verify whether Nrf2 could predict RFS in lung cancer, 131 of 167 patients were obtained their information of tumor recurrence and/or metastasis. Mutivariate Cox regression analysis showed that Nrf2 may act an independent indicator of RFS in lung cancer (RR = 1.609, 95% CI = 1.077-2.433, P = 0.040). However, the combination effects of E6 and p53 on RFS was not observed. In summary, to our best our knowledge, there are for the first time to provide the evidence that Nrf2 transcription is deregulated by p53 via decreased Sp1 binding ability on Nrf2 promoter. Therefore, we suggest that Nrf2-Keap1 pathway activated by E6 via p53 inactivation may promote lung tumor growth and consequently resulted in patients with poorer OS and RFS.

壹、中文摘要...1
貳、英文摘要...4
參、文獻綜論...7
一、肺癌之流行病學研究...7
二、肺癌的分類及病因...8
三、人類乳突瘤病毒與癌症的形成...9
四、p53 在轉錄調控以及癌症之相關性...13
五、Nrf2與癌症之相關性...15
1. Nrf2在抗氧化機制中扮演之角色...15
2. Nrf2在腫瘤化過程之角色...17
肆、研究動機...20
伍、材料與方法...22
一、細胞培養...22
二、細胞 RNA 萃取...23
三、反轉錄聚合酶連鎖反應 (Reverse transcriptase-RT)... 25
四、反轉錄聚合酶連鎖反應-聚合酶連鎖反應 (RT-PCR)...25
五、西方點墨法...26
六、染色質免疫沈澱聚合酶連鎖反應 (ChIP)...28
七、膠體 DNA 純化實驗...32
八、製備勝任菌體...32
九、接合作用...33
十、轉形作用...33
十一、菌落聚合酶鏈鎖反應... 34
十二、萃取質體 DNA...34
十三、shRNA Nrf2 載體的構築...35
十四、Nrf2 啟動子片段構築...38
十五、細胞之轉染實驗...39
十六、ß-galactosidase reporter gene assay...40
十七、3-(4,5-dimethylthiazol-2-yl)-25-diphenyltetrazolium bromide 分析法 (MTT assay)...40
十八、細胞倍增生物分析...41
十九、群落形成生物分析...41
二十、檢體來源與收集...42
二十一、免疫組織化學染色法 (Immunohistochemistry; IHC)...42
二十二、統計分析...43
陸、結果與討論...45
一、E6 促進 Nrf2 轉錄表現和其下游GPx的表現...45
二、E6 抑制 p53 蛋白活性而促進 Nrf2 的轉錄表現...48
三、Nrf2 促進肺癌細胞之增生...52
四、Nrf2 表現與肺癌患者臨床因子與預後之相關性...56
柒、參考文獻...60
捌、表與圖...69
玖、附錄...82

邱繼嵩。2007。Nrf2-ARE調控抗氧化基因表現做為肺癌患者臨床預後因子之研究。中山醫學大學醫學分子毒理學研究所碩士論文。
Akhdar, H., Loyer, P., Rauch, C., Corlu, A., Guillouzo, A., and Morel, F. (2009). Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells. Eur J Cancer 45, 2219-2227.
Bohlmeyer, T., Le, T.N., Shroyer, A.L., Markham, N., and Shroyer, K.R. (1998). Detection of human papillomavirus in squamous cell carcinomas of the lung by polymerase chain reaction. Am J Respir Cell Mol Biol 18, 265-269.
Burdette, D., Olivarez, M., and Waris, G. (2010). Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J Gen Virol 91, 681-690.
Chen, C.C., and Lee, H. (1996). Genotoxicity and DNA adduct formation of incense smoke condensates: comparison with environmental tobacco smoke condensates. Mutat Res 367, 105-114.
Chen, W., Sun, Z., Wang, X.J., Jiang, T., Huang, Z., Fang, D., and Zhang, D.D. (2009). Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34, 663-673.
Cheng, Y.W., Chiou, H.L., Sheu, G.T., Hsieh, L.L., Chen, J.T., Chen, C.Y., Su, J.M., and Lee, H. (2001). The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Res 61, 2799-2803.
Cheng, Y.W., Lee, H., Shiau, M.Y., Wu, T.C., Huang, T.T., and Chang, Y.H. (2008a). Human papillomavirus type 16/18 up-regulates the expression of interleukin-6 and antiapoptotic Mcl-1 in non-small cell lung cancer. Clin Cancer Res 14, 4705-4712.
Cheng, Y.W., Wu, M.F., Wang, J., Yeh, K.T., Goan, Y.G., Chiou, H.L., Chen, C.Y., and Lee, H. (2007). Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res 67, 10686-10693.
Cheng, Y.W., Wu, T.C., Chen, C.Y., Chou, M.C., Ko, J.L., and Lee, H. (2008b). Human telomerase reverse transcriptase activated by E6 oncoprotein is required for human papillomavirus-16/18-infected lung tumorigenesis. Clin Cancer Res 14, 7173-7179.
Cho, J.M., Manandhar, S., Lee, H.R., Park, H.M., and Kwak, M.K. (2008). Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett 260, 96-108.
Faraonio, R., Vergara, P., Di Marzo, D., Pierantoni, M.G., Napolitano, M., Russo, T., and Cimino, F. (2006). p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J Biol Chem 281, 39776-39784.
Forrester, K., Lupold, S.E., Ott, V.L., Chay, C.H., Band, V., Wang, X.W., and Harris, C.C. (1995). Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene 10, 2103-2111.
Garg, R., Gupta, S., and Maru, G.B. (2008). Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis 29, 1022-1032.
Giudice, A., and Montella, M. (2006). Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28, 169-181.
Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855-4878.
Harris, C.C. (1996). p53: at the crossroads of molecular carcinogenesis and molecular epidemiology. J Investig Dermatol Symp Proc 1, 115-118.
Hayes, J.D., and McMahon, M. (2009). NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34, 176-188.
Hennig, E.M., Suo, Z., Karlsen, F., Holm, R., Thoresen, S., and Nesland, J.M. (1999). HPV positive bronchopulmonary carcinomas in women with previous high-grade cervical intraepithelial neoplasia (CIN III). Acta Oncol 38, 639-647.
Hirayasu, T., Iwamasa, T., Kamada, Y., Koyanagi, Y., Usuda, H., and Genka, K. (1996). Human papillomavirus DNA in squamous cell carcinoma of the lung. J Clin Pathol 49, 810-817.
Homma, S., Ishii, Y., Morishima, Y., Yamadori, T., Matsuno, Y., Haraguchi, N., Kikuchi, N., Satoh, H., Sakamoto, T., Hizawa, N., et al. (2009). Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 15, 3423-3432.
Howie, H.L., Katzenellenbogen, R.A., and Galloway, D.A. (2009). Papillomavirus E6 proteins. Virology 384, 324-334.
Iwamasa, T., Miyagi, J., Tsuhako, K., Kinjo, T., Kamada, Y., Hirayasu, T., and Genka, K. (2000). Prognostic implication of human papillomavirus infection in squamous cell carcinoma of the lung. Pathol Res Pract 196, 209-218.
Jabbar, S.F., Abrams, L., Glick, A., and Lambert, P.F. (2009). Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 69, 4407-4414.
Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36, 1199-1207.
Joerger, A.C., and Fersht, A.R. (2008). Structural biology of the tumor suppressor p53. Annu Rev Biochem 77, 557-582.
Kaspar, J.W., Niture, S.K., and Jaiswal, A.K. (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47, 1304-1309.
Kim, Y.R., Oh, J.E., Kim, M.S., Kang, M.R., Park, S.W., Han, J.Y., Eom, H.S., Yoo, N.J., and Lee, S.H. (2010). Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220, 446-451.
Kinoshita, I., Dosaka-Akita, H., Shindoh, M., Fujino, M., Akie, K., Kato, M., Fujinaga, K., and Kawakami, Y. (1995). Human papillomavirus type 18 DNA and E6-E7 mRNA are detected in squamous cell carcinoma and adenocarcinoma of the lung. Br J Cancer 71, 344-349.
Kobayashi, A., Kang, M.I., Watai, Y., Tong, K.I., Shibata, T., Uchida, K., and Yamamoto, M. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 26, 221-229.
Kode, A., Rajendrasozhan, S., Caito, S., Yang, S.R., Megson, I.L., and Rahman, I. (2008). Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 294, L478-488.
Lau, A., Villeneuve, N.F., Sun, Z., Wong, P.K., and Zhang, D.D. (2008). Dual roles of Nrf2 in cancer. Pharmacol Res 58, 262-270.
Li, W., and Kong, A.N. (2009). Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48, 91-104.
Lin, R.K., Wu, C.Y., Chang, J.W., Juan, L.J., Hsu, H.S., Chen, C.Y., Lu, Y.Y., Tang, Y.A., Yang, Y.C., Yang, P.C., et al. (2010). Dysregulation of p53/Sp1 Control Leads to DNA Methyltransferase-1 Overexpression in Lung Cancer. Cancer Res.
Lin, T.S., Lee, H., Chen, R.A., Ho, M.L., Lin, C.Y., Chen, Y.H., Tsai, Y.Y., Chou, M.C., and Cheng, Y.W. (2005). An association of DNMT3b protein expression with P16INK4a promoter hypermethylation in non-smoking female lung cancer with human papillomavirus infection. Cancer Lett 226, 77-84.
Liu, Y., Tergaonkar, V., Krishna, S., and Androphy, E.J. (1999). Human papillomavirus type 16 E6-enhanced susceptibility of L929 cells to tumor necrosis factor alpha correlates with increased accumulation of reactive oxygen species. J Biol Chem 274, 24819-24827.
Mahaffey, C.M., Zhang, H., Rinna, A., Holland, W., Mack, P.C., and Forman, H.J. (2009). Multidrug-resistant protein-3 gene regulation by the transcription factor Nrf2 in human bronchial epithelial and non-small-cell lung carcinoma. Free Radic Biol Med 46, 1650-1657.
Moi, P., Chan, K., Asunis, I., Cao, A., and Kan, Y.W. (1994). Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91, 9926-9930.
Munger, K., Basile, J.R., Duensing, S., Eichten, A., Gonzalez, S.L., Grace, M., and Zacny, V.L. (2001). Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20, 7888-7898.
Na, H.K., and Surh, Y.J. (2008). Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46, 1271-1278.
Niture, S.K., Jain, A.K., and Jaiswal, A.K. (2009). Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance. J Cell Sci 122, 4452-4464.
Niture, S.K., Kaspar, J.W., Shen, J., and Jaiswal, A.K. (2010). Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 244, 37-42.
Nuorva, K., Soini, Y., Kamel, D., Pollanen, R., Bloigu, R., Vahakangas, K., and Paakko, P. (1995). p53 protein accumulation and the presence of human papillomavirus DNA in bronchiolo-alveolar carcinoma correlate with poor prognosis. Int J Cancer 64, 424-429.
O''Brien, P.M., and Campo, M.S. (2003). Papillomaviruses: a correlation between immune evasion and oncogenicity? Trends Microbiol 11, 300-305.
Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., Suzuki, T., Kobayashi, A., Yokota, J., Sakiyama, T., et al. (2008). Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68, 1303-1309.
Papaiahgari, S., Zhang, Q., Kleeberger, S.R., Cho, H.Y., and Reddy, S.P. (2006). Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-PI3K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells. Antioxid Redox Signal 8, 43-52.
Petitjean, A., Achatz, M.I., Borresen-Dale, A.L., Hainaut, P., and Olivier, M. (2007). TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157-2165.
Pi, J., Diwan, B.A., Sun, Y., Liu, J., Qu, W., He, Y., Styblo, M., and Waalkes, M.P. (2008). Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2. Free Radic Biol Med 45, 651-658.
Piccirillo, S., Filomeni, G., Brune, B., Rotilio, G., and Ciriolo, M.R. (2009). Redox mechanisms involved in the selective activation of Nrf2-mediated resistance versus p53-dependent apoptosis in adenocarcinoma cells. J Biol Chem 284, 27721-27733.
Rachakonda, G., Sekhar, K.R., Jowhar, D., Samson, P.C., Wikswo, J.P., Beauchamp, R.D., Datta, P.K., and Freeman, M.L. (2010). Increased cell migration and plasticity in Nrf2-deficient cancer cell lines. Oncogene 29, 3703-3714.
Reddy, N.M., Kleeberger, S.R., Yamamoto, M., Kensler, T.W., Scollick, C., Biswal, S., and Reddy, S.P. (2007). Genetic dissection of the Nrf2-dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection. Physiol Genomics 32, 74-81.
Reddy, N.M., Kleeberger, S.R., Bream, J.H., Fallon, P.G., Kensler, T.W., Yamamoto, M., and Reddy, S.P. (2008). Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene 27, 5821-5832.
Riley, T., Sontag, E., Chen, P., and Levine, A. (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9, 402-412.
Rowan, S., Ludwig, R.L., Haupt, Y., Bates, S., Lu, X., Oren, M., and Vousden, K.H. (1996). Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J 15, 827-838.
Schiffman, M., Castle, P.E., Jeronimo, J., Rodriguez, A.C., and Wacholder, S. (2007). Human papillomavirus and cervical cancer. Lancet 370, 890-907.
Serraino, D., Piselli, P., and Scognamiglio, P. (2001). Viral infections and cancer: epidemiological aspects. J Biol Regul Homeost Agents 15, 224-228.
Shibata, T., Ohta, T., Tong, K.I., Kokubu, A., Odogawa, R., Tsuta, K., Asamura, H., Yamamoto, M., and Hirohashi, S. (2008). Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S A 105, 13568-13573.
Singh, A., Bodas, M., Wakabayashi, N., Bunz, F., and Biswal, S. (2010). Gain of Nrf2 function in Non-Small-Cell Lung Cancer Cells Confers Radioresistance. Antioxid Redox Signal.
Singh, A., Boldin-Adamsky, S., Thimmulappa, R.K., Rath, S.K., Ashush, H., Coulter, J., Blackford, A., Goodman, S.N., Bunz, F., Watson, W.H., et al. (2008). RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68, 7975-7984.
Singhal, S., Vachani, A., Antin-Ozerkis, D., Kaiser, L.R., and Albelda, S.M. (2005). Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res 11, 3974-3986.
Soini, Y., Nuorva, K., Kamel, D., Pollanen, R., Vahakangas, K., Lehto, V.P., and Paakko, P. (1996). Presence of human papillomavirus DNA and abnormal p53 protein accumulation in lung carcinoma. Thorax 51, 887-893.
Solis, L.M., Behrens, C., Dong, W., Suraokar, M., Ozburn, N., Moran, C., Corvalan, A.H., Biswal, S., Swisher, S.G., Bekele, B.N., et al. (2010). Nrf2 and Keap1 Abnormalities in Non-Small Cell Lung Carcinoma and Association with Clinicopathologic Features. Clin Cancer Res 16, 3743-3753.
Soussi, T., and Beroud, C. (2001). Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1, 233-240.
Syrjanen, K.J. (2002). HPV infections and lung cancer. J Clin Pathol 55, 885-891.
Szabo, I., Sepp, R., Nakamoto, K., Maeda, M., Sakamoto, H., and Uda, H. (1994). Human papillomavirus not found in squamous and large cell lung carcinomas by polymerase chain reaction. Cancer 73, 2740-2744.
Tong, K.I., Katoh, Y., Kusunoki, H., Itoh, K., Tanaka, T., and Yamamoto, M. (2006). Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26, 2887-2900.
Velculescu, V.E., and El-Deiry, W.S. (1996). Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem 42, 858-868.
Velichkova, M., and Hasson, T. (2005). Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol 25, 4501-4513.
Vousden, K.H. (2000). p53: death star. Cell 103, 691-694.
Wang, J., Cheng, Y.W., Wu, D.W., Chen, J.T., Chen, C.Y., Chou, M.C., and Lee, H. (2006). Frequent FHIT gene loss of heterozygosity in human papillomavirus-infected non-smoking female lung cancer in Taiwan. Cancer Lett 235, 18-25.
Wang, R., An, J., Ji, F., Jiao, H., Sun, H., and Zhou, D. (2008). Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun 373, 151-154.
Wang, W., and Chan, J.Y. (2006). Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem 281, 19676-19687.
Woodman, C.B., Collins, S.I., and Young, L.S. (2007). The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7, 11-22.
Wu, M.F., Cheng, Y.W., Lai, J.C., Hsu, M.C., Chen, J.T., Liu, W.S., Chiou, M.C., Chen, C.Y., and Lee, H. (2005). Frequent p16INK4a promoter hypermethylation in human papillomavirus-infected female lung cancer in Taiwan. Int J Cancer 113, 440-445.
Yousem, S.A., Ohori, N.P., and Sonmez-Alpan, E. (1992). Occurrence of human papillomavirus DNA in primary lung neoplasms. Cancer 69, 693-697.
Zhang, D.D., Lo, S.C., Cross, J.V., Templeton, D.J., and Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24, 10941-10953.
Zhang, Y., Crouch, D.H., Yamamoto, M., and Hayes, J.D. (2006). Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Biochem J 399, 373-385.
zur Hausen, H. (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2, 342-350.
zur Hausen, H. (2009). Papillomaviruses in the causation of human cancers - a brief historical account. Virology 384, 260-265.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top