(3.236.222.124) 您好!臺灣時間:2021/05/13 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宏澤
研究生(外文):Hung-Tse
論文名稱:合成奈米級氧化鎳光觸媒及鐵粉之降解染料機構探討
論文名稱(外文):Investigation of the Degradation of Dyes Using Synthesized Nano-Nickel Oxide Photocatalysts and Iron Powders
指導教授:賴雅韻賴雅韻引用關係陳錦章陳錦章引用關係
指導教授(外文):Ya-Yun LaiChiing-Chang Chen
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:125
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
染料一直是水質處理中頗受矚目之汙染物,近年來以零價鐵處理有機鹵化物文獻報導眾多,但以零價鐵(zero-valent iron)降解三苯基甲烷類染料(trimethyl methane dyestuffs)之研究資料非常有限,且尚未有研究報導以金屬螯合劑促進還原鐵對三苯基甲烷類染料之降解效能,在光觸媒領域方面,開發許多金屬氧化物成為新穎觸媒,而氧化鎳也是新的光觸媒之一,其中β-Ni(OH)2 之應用性最好,而β-Ni(OH)2 常拿來做電池陽極,所以能以廢棄電池的陽極當作光觸媒,材料取得容易,能以廢棄物處理廢棄物,且將β-Ni(OH)2應用在染料方面尚無人研究,所以本研究的第二部份將探討β-Ni(OH)2降解染料方面。
論文分成兩部分,第一部份以乙基紫染料(Ethyl Violate)為降解對象,探討市售零價鐵在乙二胺四乙酸(Ethylenediaminetetraacetic Acid, EDTA)的存在下,對於EV染料降解的促進效應,並改變各項反應參數包括:染料濃度、pH值、添加物莫耳比、EDTA添加量,求得最佳降解條件。研究中以XRD和XPS對還原鐵進行特性分析,配合SEM-EDS觀察還原鐵表面型態改變;並透過HPLC-UV-ESI/MS分離鑑定EV染料降解中間產物,提出可能降解路徑,為還原鐵/ EDTA處理染料污染物應用之基礎,探討中間產物鑑定及可能降解路徑之研究。
利用 HPLC-UV-ESI-MS和GC-MS來分離鑑定EV染料,成功找出EDTA-Fe降解EV後之反應中間產物,同時也提出可能之反應機制為發色基團之去甲基化 (N-de-ethylation)、羥化 (Hydroxylation)反應與破壞發色基團之共軛結構(Cleavage of conjugated chromophore structure)。
第二部份為以水熱製程合成β-Ni(OH)2光觸媒,起始物使用Ni(NH4)2(SO4)2。前置步驟先將起始物和蒸餾水或溶劑混合後,調整適度的pH值、成核劑等參數,將前置樣品密封放入玻璃材質的錐形瓶中,以加熱迴流裝置進行反應,樣品經XRD、FESEM-EDS、XPS等材料分析儀器測量其特性。最後再以紫外光或可見光照射,觀察此β-Ni(OH)2光觸媒光催化降解染料的活性與並探討β-Ni(OH)2光觸媒的物理化學性質與其關聯性。更重要是以HPLC-PDA-ESI-MS技術分離、鑑定降解中間物,推測及討論其降解的路徑,提供以光觸媒處理染料應用的基礎。


Dye chemicals have always received great attention as contaminants in the water treatment process. In recent years, it has been numerous literatures on the treatment of organic halide through zero-valent iron; however, those on the degradation of trimethyl methane dye through zero-valent iron have been very limited. In addition, it has yet to be any studies on the effective use of metal chelating agent for the catalyzed degradation of reduced iron on triphenyl methane. In the field of photocatalysts, various metal oxides have been discovered to be of great catalysts, nickel hydroxide being one of them. Of which, β-Ni(OH)2 appears to be the most applicable, and is often used for the positive end of batteries. Therefore, the positive end of batteries can be recycled for photocatalysts, making it easy to obtain. The ideas of using recycled waste to treat other wastes, in another word, using β-Ni(OH)2 to treat dye contaminants has yet to be experimented; thus, the second part of this paper will study the degradation of β-Ni(OH)2 on dye chemicals.
This thesis is divided into two parts, the first use ethyl violate as the subject for degradation, studying the catalyzing effects of iron powder found on the market in a degradation experiment on EV dye chemicals, under the influences of ethylenediaminetetraacetic acid (EDTA). The concentration of dye chemicals, pH level, molar ratio of additives, and the EDTA level, will all contribute to finding the most efficient degradation. The study conducts property analysis on reduced iron with X-ray photoelectron spectrometer (XRD) and X-ray photoelectron spectrometer (XPS), observes the surface changes with the use of Field-emission scanning electron microscopy-Energy dispersive spectrometer (FESEM-EDS). Through High pressure liquid Chromatography- UV-Visible light detectors- Electron Spray Ionization/ Mass Spectrometer (HPLC-UV-ESI/MS), we can identify the intermediate products obtained from the degradation of EV dye, which provides a foundation of solution for the treatment of reduced iron/ EDTA dye contaminants. The identifying of intermediate product and possible solutions to degradation starts by using HPLC-PDA-ESI-MS for the separate identification of EV dye. After successfully obtaining the intermediate product produced from the removal of EV in EDTA-Fe, we also obtain the possible reaction mechanisms, N-de-methylated, hydroxylation reactions, and cleavage of conjugated chromophore structure.
The second part of this study is the use of hot water to produce synthetic β-Ni(OH)2 photocatalyst using the NiSO4(NH4)2.9H2O. First, mix the starting material with distilled water or solvent, adjust for the appropriate pH level and nucleating agent. Then, place the starting material into a flask and lowly heat up with a reflux device. The sample will be reacted with XRD, FESEM-EDS, XPS to test for its properties. Next, expose the sample to ultraviolet light and visible light, and observe the catalyzing effect of β-Ni(OH)2 on the degradation of dye chemicals. The results indicated the physical-chemical properties of β-Ni(OH)2. Finally and mostly importantly, separate and identify the intermediate product of degradation with HPLC-PDA-ESI-MS, in order to predict and discuss the method of degradation.


謝誌…......………………..................................................…......………. I
摘要…......…......….............................................................….………... II
英文…………………………..............…………………….……............V
目錄…......…......…...............................................................…..…VII
表目錄…......…......…...…….…………….………………………XI
圖目錄….........…...........……....................................…...……..…XII
第一章 序論...…......…...…….........................................................…..1
1.1研究動機...…......……...……..................................................….1
1.2 研究目的...…...........…...........................................................…….4
第二章 文獻回顧...…......…...……...............................................……5
2.1染料及染整廢水之特性與危害…………..........................…….5
2.1.1 染料之特性...………...….....................................................…...5
2.1.2 染料之分類...…..…….…………................................................6
2.1.3 染料的毒性...…..……...…..........................................................8
2.1.3 染整廢水特性...…..…….............................................................9
2.2 染料廢水相關處理技術……...…....................……………...…..11
2.2.1傳統之染整廢水處理技術...…..…….......................................11
2.2.1.1空氣氧化法...………………..…….........................................12
2.2.1.2臭氧氧化法...………………..…….........................................13
2.2.2 高級氧化程序(AOPs)..........…......................……………..…..16
2.2.2.1 Fenton 化學氧化法...………..….........................................18
2.2.2.2 光化學氧化法...………..….........................................19
2.2.2.3 光催化氧化法...………..….........................................20
2.3 光催化反應機制..........…...................................……………..…..23
2.3.1以β-Ni(OH)2光觸媒做例子簡介半導體的光催化反應機制.. 23
2.3.2 光觸媒降解有機汙染物...………...........................................25
第三章 實驗材料與方法..............................................................……..28
3.1 實驗材料...............................................................................……..29
3.1.1 染料….……....................................................................……..29
3.1.2 觸媒與觸媒合成材料…............................................……..30
3.1.3 其他藥品…....................................................................……..31
3.2還原鐵粉降解EV染料(實驗一)..........................................……..32
3.3合成β-Ni(OH)2 光觸媒(實驗二).........................................……..33
3.4 照光程序………………..............................................……..34
3.5 儀器與分析方法……………..............................................……..36
3.5.1 分離與鑑定….................................................................……..36
3.5.2 表面特性分析.................................................................……..37
第四章 結果與討論......................................................................……..38
4.1 實驗一:還原鐵降解乙基紫之降解效率與路徑研究….……...................................................................38
4.1.1材料特性與鑑定.......................................…………………38
4.1.2添加劑與染料降解效率探討.................................................45
4.1.2.1 EDTA濃度的影響…...................................................……..48
4.1.2.2 pH的影響….....................................................……..48
4.1.2.3染料濃度的影響….....................................................……..50
4.1.2.4還原鐵濃度的影響............................................................50
4.1.3 EV的降解機制...........................................................…….. 52
4.2 實驗二:用水熱法合成β-Ni(OH)2光觸媒降解乙基紫染料之機構探討……………………………………………..........66
4.2.1 材料定性分析..............................................…………...66
4.2.2 氫氧化鈉濃度對β-Ni(OH)2降解效率的影響................73
4.2.3 控制組實驗...........................……………………………...74
4.2.4 β-Ni(OH)2克數對降解效率的影響....................…………..74
4.2.5 pH值的影響..............................…………………….76
4.2.6 EV染料之UV-Vis光譜圖隨光催化降解之變化..............…..78
4.2.7 中間產物的分離與鑑定..............................…………………..78
第五章 結論與建議……………………..…..…….…………………96
5.1結論…………….……………………….………………………...96
5.1.1實驗一:還原鐵降解乙基紫之降解效率與路徑研究
……………………………………………………….……………..96
5.1.2實驗二:用水熱法合成β-Ni(OH)2光觸媒降解乙基紫染料之機構探討…………………………………………………….97
5.2建議….……………..…………………….…………...………98
參考文獻..........................................................................................99
補充資料........................................................................................109


【1】 Baronskaya, H. H.; Minyukova, A. A.; Sipatrov, A. G. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Engine. J. 2007, 133, 195–199.
【2】 Shivaji, S.; Ranjana, S.; Penar, D. R. Toxicological effects of malachite green. Aqua. Toxicol. 2004 , 66 , 319–329.
【3】 Gerhard, J. N.; Rolf, F.; Florence B. K.; Herve T.; Toxicity and human health risk of hair dyes F. Chem. Toxicol. 2004, 42, 517–543.
【4】 Amy, P.; Laurence, S. S. Organic Compounds used in Aquaculture. Hormones and Pharmaceuticals Generated by Concentrated Animal Feeding Operations. 2009, Chapter 12, 95-114.
【5】 Yulun, N.; Chun, H.; Jiuhui, Q.; Lei, Z.; Xuexian, H. Photoassisted Degradation of Azodyes over FeOxH2x-3/Fe0 in the Presence of H2O2 at Neutral pH Values. Environ. Sci. Technol. 2007 , 41, 4715-4719.
【6】 Parra, S.; Guasaquillo, I.; Enea, O.; Kiwi, J. Abatement of an azo dye on structured C-Nafion/Fe-ion surfaces by photo-Fenton reactions leading to carboxylate intermediates with a remarkable biodegradability increase of the treated solution. J. Phys. Chem.B 2003, 107, 7026-7035.
【7】 Marc, P., T.; Veronica G., M.; Miguel A. B.; Jaime G.; Santiago E. Degradation of chlorophenols by means of advanced oxidation processes: a general review Appl. Catal. B: Environ. 2004, 4 , 219–256.
【8】 Hrvoje, K.; Natalija, K.; Lidija, S. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advan. Environ. Res. 2004, 8, 501-551.
【9】 H. J. Hsing.; P. C. Chiang.; E. E. Chang.; M. Y. Chen. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. J. Hazar. Mater. 2007, 141, 8-16..
【10】 S. F. Kang.; C. H. Liao.; H. P. Hung. Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere 2000, 41, 1287-1297.
【11】 L. Ma; W. Xian Zhang Enhanced Biological Treatment of Industrial Wastewater With Bimetallic Zero-Valent Iron Environ. Sci. Technol. 2008, 42, 5384–5389.
【12】 Liu Y.; Majetich S. A.; Tilton R.; Sholl D.; Lowry G. TCE Dechlorination Rates, Pathways,and Efficiency of Nanoscale Iron Particles with Different Properties. Environ. Sci. Technol. 2005, 39, 1338-1345.
【13】 Zhao J.; Zhang Y.; Quan X.; Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separa. Purif. Technol. 2010, 71, 302–307.
【14】 Changa, S. H.; Wanga, K. S.; Chaoa, S. J.; Penga, T. H.; Huan, L. C. Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C.Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation J. Hazar. Mater. 2009, 166, 1127–1133.
【15】 Fua, F.; Wang, Q.; Tanga, B. Effective degradation of C.I. Acid Red 73 by advanced Fenton process J. Hazar. Mater. 2010, 174, 17–22.
【16】Pare, B.; Soni, A.; Bhagwat, V. W. Kintic ofreduction of aniline blue dye using zero-valent iron(Fe0) J. Chem. 2008, 1, 413-420.
【17】Dooley, K.M.; Chen, S.Y.and Ross, J. R. H. Stable Nickel-Containing Catalysts for the Oxidative Coupling of Methane J. Catal. 1994, 145, 402-408.
【18】Zhou, W.; Yao, M.; Li, Y.; Li, J. Yang, S. Hydrazine-Linked Convergent Self-Assembly of Sophisticated Concave Polyhedrons of β-Ni(OH)2 and NiO from Nanoplate Building Blocks J. Am. Chem. Soc. 2009, 131, 2959–2964.
【19】Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y.; Abe, T. Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells J. C. Chem. Phys.C 2008, 112, 16134-16139.
【20】D. R. Doerge., H. C. Chang., R. L. Divi. Churchwell M. I., Mechanism for inhibition of thyroid peroxidase by Leucomalachite Green. Chem. Res. Toxicol. 1998, 11, 1098-1104.
【21】D. F. Duxbury. The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chem. Rev 1993, 93, 381-433..
【22】B. P. Cho., T. Yang., L. R. Blankenship., J. D. Moody., M. Churchwell., F. A. Beland., S. J. Culp. Synthesis and characterization of N-demethylated metabolites of Malachite Green and Leucomalachite Green. Chem. Res. Toxicol. 2003, 16, 285-294.
【23】N. A. Littlefield., B. N. Blackwell., C. C. Hewitt., D. W. Gaylor. Chronic toxicity and carcinogenicity studies of gentian violet in mice. Funda. Appl. Toxicol. 1985, 5, 902-912.
【24】M. S. Baptista., G. L. Indig. Effect of BSA binding on photophysical and photochemical properties of Triarylmethane dyes. J. Phys. Chem. B 1998, 102, 4678-4688.
【25】T.Gessner., U. Mayer., B. aktiengesellschaft. Triarylmethane and Diarylmethane Dyes. Industrial Chemistry 1996, A27, 179-227.
【26】 Biji, V.; Khadar M. A., Analysis of AC electrical properties of nanocrystalline nickel oxide Mater. Sci. Eng. A. 2001, 304, 814-817.
【27】Zhu, W.; Yang, Z.; Wang, L.; Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater. Water Res. 1996, 30, 2949-2954.
【28】Hessel, C.; Allegre, C.; Maisseu, M.; Charbit, F.; Moulin, P. Guidelines and legislation for dye house effluents. J. Envir.Manag., 2007, 83, 171-180.
【29】張有諒,2005,「利用費頓試劑來氧化Reactive Black 5 染料的可行性及動力學之研究」,碩士論文,國立高雄師範大學化學系,高雄。
【30】Chu, W. Dye removal from textile dye wastewater using recycled alum sludge. Water Res., 2001, 35, 3147-3152.
【31】Selcuk, H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes Pigments, 2005, 64, 217-222.
【32】Kobya, M.; Can, O. T.; Bayramoglu, M. "Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J. Hazard. Mater. 2003, 100, 163-178.
【33】Lin, S. H.; Chen, M. L. Treatment of textile wastewater by chemical methods for reuse. Water Res.1997, 31, 868-876.
【34】Hu, T. L.; Lin, C.; Chiang, K. Y. Simulations of organic carbon transformation in dye wastewater and treatment suggestions. Advan. Envir. Res. 2004, 8, 493-500.
【35】Alinsafi, A.; Mottada, M.; Le Bonte, S.; Pons, M. N.; Benhammou, A. Effect of variability on the treatment of textile dyeing wastewater by activated sludge. Dyes Pigment. 2006, 69, 31-39.
【36】Azmi, W.; Sani, R. K.; Banerjee, U. C. Biodegradation of triphenylmethane dyes. Enzy. Micro. Tech. 1998, 22, 185-191.
【37】 Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in extile effluent: a critical review on current treatment technologies with a proposed alternative. Bio. Tech. 2001, 77, 247-255.
【38】Reife, A. Dyes environmental chemistry. In: Kirk. Editor. Othmer encyclopedia of chemical technology, 4th Ed. New York: John Wliey. Sons. 1993, 8, 753-784.
【39】Honda, K.; Fujishima, A. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238, 230845-230852.
【40】Carey, J. H.; Lawrence, J.; Tosine, H. M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull Envir. Contam Toxi.1976, 16, 697.
【41】Steven, N. F.; Allen, J. B. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem., 1977, 81 (15), 1484–1488.
【42】N., A. Muhammad, A., R.; Mohammed M.; A. K.; Amal A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Engin. J. 2010, 133, 195–203.
【43】Amy, P.; Laurence, S., Organic Compounds used in Aquaculture. Hormones and Pharmaceuticals Generated by Concentrated Animal Feeding Operations. 2009, Chapter 12, 95-114.
【44】Li, H.; Bian, Z.; Zhu, J.; Zhang, D.; Li, G.; Huo, Y.; Li, H.; Lu,Y. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity J. Am. Chem. Soc. 2007, 129, 8406-8407.
【45】Li, H.; Bian, Z.; Zhu, J.; Huo, Y.;Li, H.; Lu, Y. Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am.Chem. Soc. 2007, 129, 4538-4539.
【46】Elahifard, M. R.; Rahimnejad, S.;Haghighi, S.; Gholami, M. R. Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria. J. Am. Chem. Soc. 2007,129,9552-9553.
【47】Kang, Z.; Tsang, C. H. A.; Wong, N.-B.; Zhang, Z.; Lee, S.-T. Silicon Quantum Dots: A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions. J. Am. Chem. Soc. 2007, 129,12090-12091.
【48】Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature, 2006, 440,295-304.
【49】Beek, W. J. E.; Janssen, R. A. J. Spacer length dependence of photoinduced electron transfer in heterosupramolecular assemblies of TiO2 nanoparticles and terthiophene. J. Mater. Chem. 2004, 14, 2795-2802.

【50】De Angelis, F.;Fantacci, S.; Selloni, A.;Nazeeruddin, M. K.; Gratzel, M. Time-Dependent Density Functional Theory Investigations on the Excited States of Ru(II)-Dye-Sensitized TiO2 Nanoparticles: The Role of Sensitizer Protonation. J. Am. Chem. Soc. 2007, 129, 14156-14157.
【51】Snaith, H. J.; Moule, A. J.; Klein, C.; Meerholz, K.; Friend, R. H.; Gratzel, M. Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture. Nano Lett.2007, 7, 3372-3384.
【52】Kikuchi, H.; Kitano, M.; Takeuchi, M.; Matsuoka, M.;Anpo, M.; Kamat, P. V. Extending the Photoresponse of TiO2 to the Visible Light Region: Photoelectrochemical Behavior of TiO2 Thin Films Prepared by the Radio Frequency Magnetron Sputtering Deposition Method. J. Phys.Chem. B. 2006, 110, 5537-5541.
【53】Randeniya, L. K.; Bendavid, A.; Martin, P. J.; Preston, E. W. Photoelectrochemical and Structural Properties of TiO2 and N-Doped TiO2 Thin Films Synthesized Using Pulsed Direct Current Plasma-Activated Chemical Vapor Deposition. J. Phys. Chem. C. 2007, 111,18334-18342.
【54】 Escobar-Alarco′n, L.; Haro-Poniatowski, E.;Camacho-Lo′pez, M. A.; Ferna′ndez-Guasti,M.;Jı′menez-Jarquı′n, J.;Sa′nchez-Pineda, A. Structural characterization of TiO2 thin films obtained by pulsed laser deposition. Appl. Surf. Sci.1999, 137, 38-49.
【55】Bhattacharyya, D.; Sahoo, N. K.; Thakur, S.; Das, N. C. Spectroscopic ellipsometry of TiO2 layers prepared by ion-assisted electron-beam evaporation. Thin Solid Films 2000, 360, 96-104.
【56】Song, X.; Gao, L. Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania via Sol−Gel Process and Enhanced Photocatalytic Activities. J. Phys. Chem. C. 2007, 111, 8180-8193.
【57】Wang, H.; Branford, W. R.; Cohen, L. F.; Skinner, S. J.; Ryan, M. P. Preparation of Ferromagnetic Cobalt Substituted TiO2 (Anatase) Thin Films by Electrochemical Deposition.Chem. Mater. 2007, 19,3084-3091.
【58】Oswald, M.; Hessel, V.; Riedel, R. Formation of ultra-thin ceramic TiO2 films by the Langmuir–Blodgett technique – a two-dimensional sol-gel process at the air–water interface. Thin Solid Films, 1999,339, 284-289.
【59】Li, G.; Ciston, S.; Saponjic,Z. V.; Chen, L.;Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal., 2008,253, 105-111.
【60】Pires, F.I.; Joanni,E.; Savu, R.; Zaghete, M.A.;Longo, E.; Varela J.A. Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders. Mater. Lett., 2008, 62,239-245.
【61】Song, X.; Gao, L. Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties. J. Phys. Chem. C 2008, 112, 15299-15237.
【62】Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y. and Abe, T. Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells. J. C. Chem. Phys.C 2008, 112, 16134-16139.
【63】Lai,T.;Shu,Y.;Huang,G.;Lee,C.; Wang,C. Microwave-assisted and liquid oxidation combination techniques for the preparation of nickel oxide nanoparticles. J. Alloys and Compounds 2008, 450,318–322.
【64】K.M. Dooley, S.Y. Chen, J.R.H. Ross, Stable Nickel-Containing Catalysts for the Oxidative Coupling of Methane. J. Catal. 1994, 145, 402-408.
【65】V. Biji, M.A.Khadar, Analysis of AC electrical properties of nanocrystalline nickel oxide. Mater. Sci. Eng. A 2001, 304, 814-821.
【66】Chen, C. C.; Lu, C. S.; Photocatalytic Degradation of Basic Violet 4: Degradation Efficiency, Product Distribution, and Mechanisms. J. Phys. Chem. C 2007, 111, 13922-13932.
【67】Ray, L. F.; Yunfei, X.; Hongping, H. Synthesis characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption. J. Colloid Interface Sci. 2010, 341, 153–161.
【68】Chen, C. C.; Lua, C. S.; Chung, Y. C. Photocatalytic degradation of ethyl violet in aqueous solution mediated by TiO2 suspensions. J. Photochem. Photobiol. A Chem.2006, 181, 120–125.
【69】Chen, C. C.; Fan, H. J.; Jiu, C. Y.; Jan, J. L.; Liu, H. D.; Lu, C. S. Photooxidative N-de-methylation of crystal violet dye in aqueous nano-TiO2 dispersions under visible light irradiation. J. Photochem. Photobiol. A Chem. 2006 184, 147–154.
【70】黃耀輝、周珊珊、黃國豪,「Fenton 家族廢水高級氧化處理技術」,經濟部工業局,2001 工程實務技術研討會論文集,2001 年11 月。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔