(3.238.130.97) 您好!臺灣時間:2021/05/15 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭雅惠
研究生(外文):Ya-Hui
論文名稱:長期低劑量果糖對小鼠腎臟損傷之探討
論文名稱(外文):Long-term Low-dose Fructose-Induced RenalInjuries in the Mouse
指導教授:張菡馨
指導教授(外文):Han-Hsin Chang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:90
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
果糖攝取已伴隨代謝症候群盛行率有攀升的趨勢,而在流行病學上代謝症候群與腎臟損傷的發展極具相關性。本研究假設果糖不同的代謝路徑,在小鼠也許會導致不同的生理和腎臟組織形態反應的變化程度。而研究目的主要是探討20%果糖飲水誘發慢性腎損傷之動物模式,運用蘇木紫-伊紅染色方法觀察小鼠腎臟組織切片是否造成慢性
損傷,並探討果糖對於小鼠腎臟組織病理形態影響及定量分析。結果
顯示飲食中添加20%果糖介入在組織病理學形態方面發現,果糖會造
成腎臟中鮑氏囊數目顯著減少(P<0.01),且腎血管和鮑氏囊基底膜有增厚的趨勢,而鮑氏囊也出現明顯紅血球堆積的情形(P<0.01)。由此可知,根據本研究發現餵食20%果糖可能會誘發小鼠慢性腎損傷的發生,而果糖誘發腎臟功能紊亂與代謝症候群有關。因此,飲食中果糖的消耗與慢性腎損傷的發展將更值得被關注。

Fructose intake has been associated with increased prevalence of metabolic syndrome a trend, and in the epidemiology of metabolic syndrome and the development of renal injury in very relevant.It is hypothesized that different metabolic pathways of fructose,in mice may
lead to different physiological and morphological response to changes in kidney level. The purpose of this study was to explore the drinking water of 20% fructose-induced animal model of chronic renal damage.using Hematoxylin & eosin staining of renal biopsy is caused by chronic injury,
and to explore the fructose for the Morphology of renal pathology in mice and quantitative analysis. The results showed that diet containing 20% fructose involved in histopathological patterns found that fructose can
cause kidney significantly reduce the number of Martin''s capsule (P <0.01), and renal vascular and Martin''s capsule basement membrane thickening trend Powell also showed a visible capsule case of accumulation of red blood cells (P <0.01). It can be seen,this study found that 20% of fructose fed mice may induce the occurrence of
chronic renal injury, while fructose-induced kidney disorders and metabolic syndrome. Therefore, the consumption of fructose diet and chronic renal injury in development will be more worthy of attention.

目錄
中文摘要.............................................I
英文摘要.............................................II
目錄.................................................1
表目錄...............................................3
圖目錄...............................................4
附錄.................................................6
第一章、緒論.........................................7
第一節、前言.........................................7
第二節、研究動機.....................................9
第三節、研究目的.....................................9
第二章、文獻探討.....................................10
第一節、果糖.........................................10
第二節、腎臟生理功能.................................15
第三節、果糖與腎臟之關聯性...........................18
第四節、果糖與代謝症候群之關聯性.....................23
第五節、研究架構.....................................25
第三章、實驗設計與方法...............................26
(一)研究材料與方法.................................26
(二)實驗流程.......................................28
(三)儀器設備.......................................29
(四)實驗試劑.......................................31
(五)實驗動物設計...................................32
第四章、結果.........................................37
第五章、討論.........................................71
第六章、結論.........................................77
參考資料.............................................78
表目錄
表1、食物中含糖量分析.................................11
表2、長期飲用20%果糖飲水小鼠腎臟之變化................44
表3、長期餵食20%果糖水之小鼠腎臟對46週腎損傷之相關係數同
組比較................................................66
表4、長期餵食20%果糖水之小鼠腎臟對54週腎損傷之相關係數同
組比較................................................67
圖目錄
圖1、果糖代謝的主要途徑...............................14
圖2、腎臟的構造.......................................17
圖 3、長期餵食20%果糖飲水比較不同週齡(25週、46週、54週)其
腎臟腎臟鮑氏囊個數組織病理切片之蘇木紫-伊紅染色分析。
......................................................41
圖 4、長期餵食20%果糖飲水比較不同週齡(25週、46週、54週)其
腎臟鮑氏囊內組織病理切片之蘇木紫-伊紅染色分析。
......................................................42
圖 5、長期餵食20%果糖飲水比較不同週齡(25週、46週、54週)其
腎臟髓質內組織病理切片之蘇木紫-伊紅染色分析。
......................................................43
圖 6、長期餵食20%果糖飲水比較不同週齡(25週、46週、54週)其
腎臟腎小管面積組織病理切片之蘇木紫-伊紅染色分析。
.....................................................44
圖7、長期餵食20%果糖飲水小鼠腎臟鮑氏囊個數(40X)之變化
.....................................................47
圖8、長期餵食20%果糖飲水小鼠腎臟鮑氏囊個數(100X)之變化
.....................................................48
圖9、長期餵食20%果糖飲水小鼠腎臟鮑氏囊紅血球之變化
.....................................................50
圖10、長期餵食20%果糖飲水小鼠腎臟鮑氏囊細胞核之變化
.....................................................51
圖11、長期餵食20%果糖飲水小鼠腎臟鮑氏囊外徑之變化
.....................................................53
圖12、長期餵食20%果糖飲水小鼠腎臟基底膜之變化
.....................................................55
圖13、長期餵食20%果糖飲水小鼠腎臟髓質紅血球之變化
.....................................................57
圖14、長期餵食20%果糖飲水小鼠腎臟髓質脂肪之變化
.....................................................58
圖 15、長期飲用20%果糖飲水小鼠腎臟之腎絲球直徑之變化
.....................................................60
圖 16、長期餵食20%果糖飲水小鼠腎臟腎小管面積之變化
.....................................................62
圖 17、長期餵食20%果糖飲水比較不同週齡(25週、46週、54週)
其腎臟髓質內切片之蘇木紫-伊紅染色分析。
....................................................90


























簡易解剖學-簡簡單單學解剖生理(原著: Eran Tamir MD 編譯:陳牧君, 2006 年7 月10 日出版一刷 第13 章 泌尿系統P231-236; 合記圖書出版社)
臨床腎臟病學-檢查、診斷、疾病各論(編輯:菱田 明,真野博史 , 編譯:賴敏裕,2005 年 1 月10 日 出版一刷; 第2 章 腎的構造和功能 P6-24; 合記圖書出版社)
Anundi, I., Kauffman, F.C., and Thurman, R.G. (1987). Gluconeogenesis from fructose predominates in periportal regions of the liver lobule. J Biol Chem 262, 9529-9534.
Asipu, A., Hayward, B.E., O''Reilly, J., and Bonthron, D.T. (2003). Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria. Diabetes 52, 2426-2432.
Bailey, R.R., Lynn, K.L., Burry, A.F., and Drennan, C. (1989). Proteinuria, glomerulomegaly and focal glomerulosclerosis in a grossly obese man with obstructive sleep apnea syndrome. Aust N Z J Med 19, 473-474.
Bais, R., James, H.M., Rofe, A.M., and Conyers, R.A. (1985). The purification and properties
of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol. Biochem J 230, 53-60.
Bar-On, H., and Stein, Y. (1968). Effect of glucose and fructose administration on lipid metabolism in the rat. J Nutr 94, 95-105.
Barbosa, C.R., Albuquerque, E.M., Faria, E.C., Oliveira, H.C., and Castilho, L.N. (2007).
Opposite lipemic response of Wistar rats and C57BL/6 mice to dietary glucose or fructose supplementation. Braz J Med Biol Res 40, 323-331.
Boot-Handford, R.P., and Heath, H. (1981). The effect of dietary fructose and diabetes on the rat kidney. Br J Exp Pathol 62, 398-406.
Brancati, F.L., Whelton, P.K., Randall, B.L., Neaton, J.D., Stamler, J., and Klag, M.J. (1997).
Risk of end-stage renal disease in diabetes mellitus: a prospective cohort study of men screened for MRFIT. Multiple Risk Factor Intervention Trial. JAMA 278, 2069-2074.
Bray, G.A., Nielsen, S.J., and Popkin, B.M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79, 537-543.
Burch, H.B., Choi, S., Dence, C.N., Alvey, T.R., Cole, B.R., and Lowry, O.H. (1980). Metabolic effects of large fructose loads in different parts of the rat nephron. J Biol Chem 255, 8239-8244.
Burch, H.B., Narins, R.G., Chu, C., Fagioli, S., Choi, S., McCarthy, W., and Lowry, O.H. (1978). Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am J Physiol 235, F246-253.
Cersosimo, E., Judd, R.L., and Miles, J.M. (1994). Insulin regulation of renal glucose metabolism in conscious dogs. J Clin Invest 93, 2584-2589.
Chagnac, A., Weinstein, T., Korzets, A., Ramadan, E., Hirsch, J., and Gafter, U. (2000). Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol 278, F817-822.
Chen, J., Muntner, P., Hamm, L.L., Fonseca, V., Batuman, V., Whelton, P.K., and He, J. (2003). Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol 14, 469-477.
Chen, J., Muntner, P., Hamm, L.L., Jones, D.W., Batuman, V., Fonseca, V., Whelton, P.K., and He, J. (2004). The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med 140, 167-174.
Cochrane, S.M., and Robinson, G.B. (1995). In vitro glycation of glomerular basement membrane alters its permeability: a possible mechanism in diabetic complications. FEBS Lett 375, 41-44.
Cohen, A.M., and Teitelbaum, A. (1968). Effect of glucose, fructose, sucrose and starch on lipgenesis in rats. Life Sci 7, 23-29. Dai, S., Todd, M.E., Lee, S., and McNeill, J.H. (1994). Fructose loading induces cardiovascular and metabolic changes in nondiabetic and diabetic rats. Can J Physiol Pharmacol 72, 771-781.
Debnam, E.S., and Unwin, R.J. (1996). Hyperglycemia and intestinal and renal glucose transport: implications for diabetic renal injury. Kidney Int 50, 1101-1109.
Dominguez, J.H., Wu, P., Hawes, J.W., Deeg, M., Walsh, J., Packer, S.C., Nagase, M., Temm,
C., Goss, E., and Peterson, R. (2006). Renal injury: similarities and differences in male and female rats with the metabolic syndrome. Kidney Int 69, 1969-1976.
Elliott, S.S., Keim, N.L., Stern, J.S., Teff, K., and Havel, P.J. (2002). Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76, 911-922.
Fields-Gardner, C., and Fergusson, P. (2004). Nutrition intervention in the care of persons with human immunodeficiency virus infection: position of the American Dietetic Association and Dietitians of Canada. Can J Diet Pract Res 65, 132-135.
Froesch, E.R., and Ginsberg, J.L. (1962). Fructose metabolism of adipose tissue. I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J Biol Chem 237, 3317-3324.
Fujikawa, R., Okubo, M., Egusa, G., and Kohno, N. (2001). Insulin resistance precedes the appearance of albuminuria in non-diabetic subjects: 6 years follow up study. Diabetes Res Clin Pract 53, 99-106.
Gersch, M.S., Mu, W., Cirillo, P., Reungjui, S., Zhang, L., Roncal, C., Sautin, Y.Y., Johnson, R.J., and Nakagawa, T. (2007). Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol 293, F1256-1261.
Giugliano, D., Ceriello, A., and Paolisso, G. (1996). Oxidative stress and diabetic vascular complications. Diabetes Care 19, 257-267.
Glushakova, O., Kosugi, T., Roncal, C., Mu, W., Heinig, M., Cirillo, P., Sanchez-Lozada, L.G., Johnson, R.J., and Nakagawa, T. (2008). Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. J Am Soc Nephrol 19, 1712-1720.
Guder, W.G., and Ross, B.D. (1984). Enzyme distribution along the nephron. Kidney Int 26, 101-111.
Guzman-Maldonado, H., and Paredes-Lopez, O. (1995). Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 35, 373-403.
Hall, J.E., Crook, E.D., Jones, D.W., Wofford, M.R., and Dubbert, P.M. (2002). Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci 324, 127-137.
Hallfrisch, J. (1990). Metabolic effects of dietary fructose. FASEB J 4, 2652-2660.
Havel, P.J. (2005). Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63, 133-157.
Hoehner, C.M., Greenlund, K.J., Rith-Najarian, S., Casper, M.L., and McClellan, W.M. (2002).
Association of the insulin resistance syndrome and microalbuminuria among nondiabetic native Americans. The Inter-Tribal Heart Project. J Am Soc Nephrol 13, 1626-1634.
Huang, Y.J., Fang, V.S., Juan, C.C., Chou, Y.C., Kwok, C.F., and Ho, L.T. (1997). Amelioration of insulin resistance and hypertension in a fructose-fed rat model with fish oil supplementation. Metabolism 46, 1252-1258.
Humphrey, L.L., Ballard, D.J., Frohnert, P.P., Chu, C.P., O''Fallon, W.M., and Palumbo, P.J. (1989). Chronic renal failure in non-insulin-dependent diabetes mellitus. A population-based study in Rochester, Minnesota. Ann Intern Med 111, 788-796.
Hwang, I.S., Ho, H., Hoffman, B.B., and Reaven, G.M. (1987). Fructose-induced insulin resistance and hypertension in rats. Hypertension 10, 512-516.
Jiang, T., Liebman, S.E., Lucia, M.S., Phillips, C.L., and Levi, M. (2005a). Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease. J Am Soc Nephrol 16, 2385-2394.
Jiang, T., Wang, Z., Proctor, G., Moskowitz, S., Liebman, S.E., Rogers, T., Lucia, M.S., Li, J., and Levi, M. (2005b). Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem 280, 32317-32325.
Joyeux-Faure, M., Rossini, E., Ribuot, C., and Faure, P. (2006). Fructose-fed rat hearts are protected against ischemia-reperfusion injury. Exp Biol Med (Maywood) 231, 456-462.
Jurgens, H., Haass, W., Castaneda, T.R., Schurmann, A., Koebnick, C., Dombrowski, F., Otto, B., Nawrocki, A.R., Scherer, P.E., Spranger, J., et al. (2005). Consuming fructose-sweetened beverages increases body adiposity in mice. Obes Res 13, 1146-1156.
Kamari, Y., Harari, A., Shaish, A., Peleg, E., Sharabi, Y., Harats, D., and Grossman, E. (2008). Effect of telmisartan, angiotensin II receptor antagonist, on metabolic profile in fructose-induced hypertensive, hyperinsulinemic, hyperlipidemic rats. Hypertens Res 31, 135-140.
Kanarek, M.S., and Young, T.B. (1982). Drinking water treatment and risk of cancer death in Wisconsin. Environ Health Perspect 46, 179-186.
Kasim-Karakas, S.E., Vriend, H., Almario, R., Chow, L.C., and Goodman, M.N. (1996). Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters. J Lab Clin Med 128, 208-213.
Kasiske, B.L., and Napier, J. (1985). Glomerular sclerosis in patients with massive obesity. Am J Nephrol 5, 45-50.
Kaufmann, N.A., Poznanski, R., Blondheim, S.H., and Stein, Y. (1967). Comparison of effects of fructose, sucrose, glucose, and starch on serum lipids in patients with hypertriglyceridemia and normal subjects. Am J Clin Nutr 20, 131-132.
Kelley, G.L., Allan, G., and Azhar, S. (2004). High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 145, 548-555.
Kizhner, T., and Werman, M.J. (2002). Long-term fructose intake: biochemical consequences and altered renal histology in the male rat. Metabolism 51, 1538-1547.
Kozak, M., Hayward, B., Borek, D., Bonthron, D.T., and Jaskolski, M. (2001). Expression, purification and preliminary crystallographic studies of human ketohexokinase. Acta Crystallogr D Biol Crystallogr 57, 586-588.
Krebs, H.A. (1963). Renal Gluconeogenesis. Adv Enzyme Regul 1, 385-400.
Laaksonen, D.E., Lakka, H.M., Niskanen, L.K., Kaplan, G.A., Salonen, J.T., and Lakka, T.A. (2002). Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 156, 1070-1077.
Landau, B.R., Wahren, J., Chandramouli, V., Schumann, W.C., Ekberg, K., and Kalhan, S.C. (1996a). Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 98, 378-385.
Landau, B.R., Wahren, J., Previs, S.F., Ekberg, K., Chandramouli, V., and Brunengraber, H. (1996b). Glycerol production and utilization in humans: sites and quantitation. Am J Physiol 271, E1110-1117.
Levine, R. (1986). Monosaccharides in health and disease. Annu Rev Nutr 6, 211-224.
Maenpaa, P.H., Raivio, K.O., and Kekomaki, M.P. (1968). Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science 161, 1253-1254.
Marks, J., Carvou, N.J., Debnam, E.S., Srai, S.K., and Unwin, R.J. (2003). Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol 553, 137-145.
Masson, S., Henriksen, O., Stengaard, A., Thomsen, C., and Quistorff, B. (1994). Hepatic metabolism during constant infusion of fructose; comparative studies with 31P-magnetic resonance spectroscopy in man and rats. Biochim Biophys Acta 1199, 166-174.
Mayes, P.A. (1993). Intermediary metabolism of fructose. Am J Clin Nutr 58, 754S-765S.
Mehnert, H. (1976). [Sugar substitutes in the diabetic diet]. Int Z Vitam Ernahrungsforsch Beih 15, 295-324.
Mykkanen, L., Zaccaro, D.J., Wagenknecht, L.E., Robbins, D.C., Gabriel, M., and Haffner, S.M. (1998). Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study. Diabetes 47, 793-800.
Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K.R., Short, R.A., Glushakova, O., Ouyang, X., Feig, D.I., Block, E.R., Herrera-Acosta, J., et al. (2006). A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290, F625-631.
Nakagawa, T., Tuttle, K.R., Short, R.A., and Johnson, R.J. (2005). Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol 1, 80-86.
Owen, O.E., Felig, P., Morgan, A.P., Wahren, J., and Cahill, G.F., Jr. (1969). Liver and kidney metabolism during prolonged starvation. J Clin Invest 48, 574-583.
Palaniappan, L., Carnethon, M., and Fortmann, S.P. (2003). Association between microalbuminuria and the metabolic syndrome: NHANES III. Am J Hypertens 16, 952-958.
Palanisamy, N., Viswanathan, P., and Anuradha, C.V. (2008). Effect of genistein, a soy isoflavone, on whole body insulin sensitivity and renal damage induced by a high-fructose diet. Ren Fail 30, 645-654.
Park, S.K., and Meyer, T.W. (1992). The effects of fructose feeding on glomerular structure in the rat. J Am Soc Nephrol 3, 1330-1332.
Park, Y.K., and Yetley, E.A. (1993). Intakes and food sources of fructose in the United States. Am J Clin Nutr 58, 737S-747S.
Raskin, P., and Rosenstock, J. (1986). Blood glucose control and diabetic complications. Ann Intern Med 105, 254-263.
Reaven, G.M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595-1607.
Reaven, G.M. (1995). Pathophysiology of insulin resistance in human disease. Physiol Rev 75, 473-486.
Sanchez-Lozada, L.G., Tapia, E., Bautista-Garcia, P., Soto, V., Avila-Casado, C., Vega-Campos, I.P., Nakagawa, T., Zhao, L., Franco, M., and Johnson, R.J. (2008). Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 294, F710-718.
Sanchez-Lozada, L.G., Tapia, E., Jimenez, A., Bautista, P., Cristobal, M., Nepomuceno, T., Soto, V., Avila-Casado, C., Nakagawa, T., Johnson, R.J., et al. (2007). Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 292, F423-429.
Stumvoll, M., Chintalapudi, U., Perriello, G., Welle, S., Gutierrez, O., and Gerich, J. (1995).
Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest 96, 2528-2533.
Thorburn, A.W., Storlien, L.H., Jenkins, A.B., Khouri, S., and Kraegen, E.W. (1989).
Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr 49, 1155-1163.
Tobey, T.A., Mondon, C.E., Zavaroni, I., and Reaven, G.M. (1982). Mechanism of insulin resistance in fructose-fed rats. Metabolism 31, 608-612.
Van den Berghe, G. (1986). Fructose: metabolism and short-term effects on carbohydrate and purine metabolic pathways. Prog Biochem Pharmacol 21, 1-32.
Vasdev, S., Longerich, L., and Gill, V. (2004). Prevention of fructose-induced hypertension by dietary vitamins. Clin Biochem 37, 1-9.
Verani, R.R. (1992). Obesity-associated focal segmental glomerulosclerosis: pathological features of the lesion and relationship with cardiomegaly and hyperlipidemia. Am J Kidney Dis 20, 629-634.
Wirthensohn, G., and Guder, W.G. (1980). Triacylglycerol metabolism in isolated rat kidney cortex tubules. Biochem J 186, 317-324.
Yamada, H., Hishida, A., Kumagai, H., and Nishi, S. (1992). [Effects of age, renal diseases and diabetes mellitus on the renal size reduction accompanied by the decrease of renal function]. Nippon Jinzo Gakkai Shi 34, 1071-1075.
Zaoui, P., Rossini, E., Pinel, N., Cordonnier, D., Halimi, S., and Morel, F. (1999). High fructose-fed rats: a model of glomerulosclerosis involving the renin-angiotensin system and renal gelatinases. Ann N Y Acad Sci 878, 716-719.
Zavaroni, I., Sander, S., Scott, S., and Reaven, G.M. (1980). Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism 29, 970-973.
Ziyadeh, F.N., Hoffman, B.B., Han, D.C., Iglesias-De La Cruz, M.C., Hong, S.W., Isono, M., Chen, S., McGowan, T.A., and Sharma, K. (2000). Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by
treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 97, 8015-8020.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top