跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許文馨
研究生(外文):WEN-HSIN
論文名稱:土肉桂葉精油在STZ-糖尿病大鼠之降血糖作用
論文名稱(外文):The hypoglycemic effect of leave essential oil of Cinnamomum osmophloeum Kaneh. on STZ-DM rats
指導教授:劉承慈
指導教授(外文):Cheng-Tzu Liu
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:66
相關次數:
  • 被引用被引用:3
  • 點閱點閱:886
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為觀察台灣本土之土肉桂抗糖尿病作用。利用雄性Wistar大鼠,以尾靜脈注射STZ (65 mg/kg BW)誘發糖尿病,誘發後三天,分別以口胃管灌低、中或高劑量土肉桂葉精油、肉桂醛 (40mg/kg Bw)、口服降血糖藥(glybenclamide; 1.2 mg/kg BW)或載劑玉米油(corn oil,CO;2 ml/kg BW),並分別標示DM-TC L、DM-TC M、DM-TC H、DM-C40、DM-CO組;未施打STZ僅灌食玉米油則為CO組,採隔日灌食共計八次。糖尿病誘發後第10天進行胰島素耐受試驗(ITT),誘發後第17天進行口服葡萄糖耐受測試(OGTT),於第21天隔夜空腹後犧牲,然後取其臟器、骨骼肌紀錄重量,收集血液進行生化分析。結果發現,灌食土肉桂葉精油可改善糖尿病大鼠的代謝狀況及骨骼肌流失,逆轉STZ誘發之空腹高血糖、降低血中果糖胺濃度,並增加空腹血漿中的胰島素含量及胰臟中的胰島素含量,效果與口服降血糖藥效果相當。灌食土肉桂葉精油可顯著減少糖尿病大鼠在OGTT期間血糖累積量,低劑量的土肉桂葉精油可顯著增加血漿中胰島素,經過土肉桂葉精油灌食後,均能顯著增加GLP-1、GIP濃度。胰島素耐受試驗及HOMA-IR的計算值均顯示,土肉桂葉精油油可增加胰島素敏感性且部分原因與降低周邊血中游離脂肪酸有關。此外,土肉桂葉精油可逆轉糖尿病大鼠腎臟代償性肥大且部分原因可能與改善糖尿病大鼠之血尿酸濃度有關。上述結果顯示土肉桂葉精油具有抗糖尿病作用。

The aim of this study was to investigate the anti-diabetic effect of Leave essential oil of Cinnamomum osmophloeum Kaneh. Male Wistar rats were induced to be diabetes with STZ (65 mg / kg BW, iv). At three days after the induction of diabetes, rats received every other day for 8 times by gavage low, medium or high dose of leave essential oil of Cinnamomum osmophloeum Kaneh. , Cinnamaldehyde (40mg/kg Bw), glybenclamide(1.2 mg/kg Bw) or vehicle (corn oil, 2 ml/kg Bw). Control rats received corn oil only. ITT or OGTT was carried out at 10 or 17 days after the induction of DM, respectively. At 21 days after the induction of DM, rats were killed with CO2 after overnight starvation, followed by the collection of biological samples from rats. It showed that leave essential oil of Cinnamomum osmophloeum Kaneh. improved the metabolic status and muscle loss, ameliorated fasting blood sugar, lowered blood fructosamine concentration, and elevated both fasting plasma insulin and pancreas insulin levels in diabetic rats. These effects are comparable to that of oral hypoglycemic agents. Leave essential oil of Cinnamomum osmophloeum Kaneh. also significantly improved oral glucose tolerance and the increment of plasma levels of insulin, GLP-1, and GIP during OGTT period. In the other hand, data from ITT and the calculated values of HOMA-IR showed that the hypoglycemic effect of leave essential oil of Cinnamomum osmophloeum Kaneh. was partly due to ameliorated insulin sensitivity. The reduced peripheral level of free fatty acids by the tested essential oil suggested its indirect beneficial effect on insulin sensitivity. In addition, leave essential oil of Cinnamomum osmophloeum Kaneh. reversed renal hypertrophy in diabetic rats and reduced peripheral uric acid concentration in diabetic rats. The results of the present study suggest that leave essential oil of Cinnamomum
osmophloeum Kaneh. possesses anti-diabetic effect and such effect is at
least partly performed by cinnamaldehyde in this preparation.


目錄
圖表次................................................ I
中英文專有名詞及縮寫對照表............................ III
摘要................................................ IV
前言................................................ VI

第一章、 文獻探討
一、糖尿病的概況與定義.............................. 1
二、胰臟及β細胞..................................... 4
三、胰島素分泌及其對血糖恆定所扮演的角色............ 6
四、糖尿病的慢性併發症發展機制...................... 10
五、糖尿病的慢性併發症.............................. 12
六、STZ誘發之糖尿病之動物模式....................... 16
七、肉桂及其功能.................................... 17
八、研究目的........................................ 20

第二章、 實驗材料與方法
壹、 實驗材料與儀器設備........................ 21
一、化學試藥....................................... 21
二、分析套組....................................... 21
三、儀器設備....................................... 22
四、土肉桂葉精油................................... 22
五、實驗動物....................................... 23

貳、實驗方法....................................... 23
一、糖尿病動物模式及其處理......................... 23
二、胰島素耐受試驗 ................................. 24
三、口服葡萄糖耐受試驗............................. 25
四、樣品收集....................................... 25
五、實驗分析項目................................... 26
六、統計分析....................................... 33

第三章、 結果
一、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠代謝特徵之影響
.............................................34
二、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠之空腹血糖影響
.............................................35


三、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠之臟器、骨骼肌 重量之影響..................................... 36
四、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠之空腹血漿胰島素濃度與胰臟胰島素含量之影響........................ 37
五、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠之胰島素耐受測試影響.............................................. 38
六、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠之口服葡萄糖耐受性影響............................................ 38
七、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠之葡萄糖刺激後腸道荷爾蒙分泌影響.................................. 39
八、灌食不同土肉桂葉精油對於STZ誘發糖尿病大鼠之血液生化值影響.................................................. 40

第四章、 討論....................................... 51
第五章、 結論....................................... 58
第六章、 參考文獻................................... 59


Deal watch: CureDM licenses regenerative diabetes therapy to Sanofi-Aventis. Nat Rev Drug Discov 9, 422.
(2006). Diagnosis and classification of diabetes mellitus. Diabetes Care 29 Suppl 1, S43-48.
(2007). Diagnosis and classification of diabetes mellitus. Diabetes Care 30 Suppl 1, S42-47.
Adeneye, A.A., and Adeyemi, O.O. (2009). Further evaluation of antihyperglycaemic activity of Hunteria umbellata (K. Schum) Hallier f. seed extract in experimental diabetes. J Ethnopharmacol 126, 238-243.
Altschuler, J.A., Casella, S.J., MacKenzie, T.A., and Curtis, K.M. (2007). The effect of cinnamon on A1C among adolescents with type 1 diabetes. Diabetes Care 30, 813-816.
Armbruster, D.A. (1987). Fructosamine: structure, analysis, and clinical usefulness. Clin Chem 33, 2153-2163.
Baker, W.L., Gutierrez-Williams, G., White, C.M., Kluger, J., and Coleman, C.I. (2008). Effect of cinnamon on glucose control and lipid parameters. Diabetes Care 31, 41-43.
Baumann, C.A., and Saltiel, A.R. (2001). Spatial compartmentalization of signal transduction in insulin action. Bioessays 23, 215-222.
Bjornholm, M., and Zierath, J.R. (2005). Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans 33, 354-357.
Blachnio-Zabielska, A., Zabielski, P., Baranowski, M., and Gorski, J. Effects of streptozotocin-induced diabetes and elevation of plasma FFA on ceramide metabolism in rat skeletal muscle. Horm Metab Res 42, 1-7.
Boushel, R., Gnaiger, E., Schjerling, P., Skovbro, M., Kraunsoe, R., and Dela, F. (2007). Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50, 790-796.
Briede, J., Stivrina, M., Stoldere, D., Vigante, B., and Duburs, G. (2007). Effect of cerebrocrast, a new long-acting compound on blood glucose and insulin levels in rats when administered before and after STZ-induced diabetes mellitus. Cell Biochem Funct 25, 673-680.
Campbell, R.K. (2009). Fate of the beta-cell in the pathophysiology of type 2 diabetes. J Am Pharm Assoc (2003) 49 Suppl 1, S10-15.
Ceriello, A. (2005). Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54, 1-7.
Chao, L.K., Hua, K.F., Hsu, H.Y., Cheng, S.S., Lin, I.F., Chen, C.J., Chen, S.T., and Chang, S.T. (2008). Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem Toxicol 46, 220-231.
Cheng, A.Y., and Fantus, I.G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 172, 213-226.
Cheng, S.S., Liu, J.Y., Lin, C.Y., Hsui, Y.R., Lu, M.C., Wu, W.J., and Chang, S.T. (2008). Terminating red imported fire ants using Cinnamomum osmophloeum leaf essential oil. Bioresour Technol 99, 889-893.
Chia, C.W., and Egan, J.M. (2009). Role and development of GLP-1 receptor agonists in the management of diabetes. Diabetes Metab Syndr Obes 2, 37.
Chua, M.T., Tung, Y.T., and Chang, S.T. (2008). Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresour Technol 99, 1918-1925.
Crawford, P. (2009). Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med 22, 507-512.
Dehghan, A., van Hoek, M., Sijbrands, E.J., Hofman, A., and Witteman, J.C. (2008). High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care 31, 361-362.
Domenighetti, A.A., Danes, V.R., Curl, C.L., Favaloro, J.M., Proietto, J., and Delbridge, L.M. Targeted GLUT-4 deficiency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca(2+) and proton flux dysregulation. J Mol Cell Cardiol 48, 663-672.
Egede, L.E., Mueller, M., Echols, C.L., and Gebregziabher, M. Longitudinal differences in glycemic control by race/ethnicity among veterans with type 2 diabetes. Med Care 48, 527-533.
Ferrannini, E., Massari, M., Nannipieri, M., Natali, A., Ridaura, R.L., and Gonzales-Villalpando, C. (2009). Plasma glucose levels as predictors of diabetes: the Mexico City diabetes study. Diabetologia 52, 818-824.
Hairong, N., Zengchang, P., Shaojie, W., Weiguo, G., Lei, Z., Jie, R., Feng, N., Tuomilehto, J., and Qing, Q. Serum uric acid, plasma glucose and diabetes. Diab Vasc Dis Res 7, 40-46.
Hekkala, A., Knip, M., and Veijola, R. (2007). Ketoacidosis at diagnosis of type 1 diabetes in children in northern Finland: temporal changes over 20 years. Diabetes Care 30, 861-866.
Hellstrom, P.M. GLP-1 playing the role of a gut regulatory compound. Acta Physiol (Oxf).
Hemmings, S.J., and Spafford, D. (2000). Neonatal STZ model of type II diabetes mellitus in the Fischer 344 rat: characteristics and assessment of the status of the hepatic adrenergic receptors. Int J Biochem Cell Biol 32, 905-919.
Hovind, P., Rossing, P., Tarnow, L., Johnson, R.J., and Parving, H.H. (2009). Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 58, 1668-1671.
Huang, M.C., Hsu, C.C., Wang, H.S., and Shin, S.J. Prospective randomized controlled trial to evaluate effectiveness of registered dietitian-led diabetes management on glycemic and diet control in a primary care setting in Taiwan. Diabetes Care 33, 233-239.
Kelley, D.E., He, J., Menshikova, E.V., and Ritov, V.B. (2002). Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944-2950.
Khan, A., Safdar, M., Ali Khan, M.M., Khattak, K.N., and Anderson, R.A. (2003). Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26, 3215-3218.
Kieffer, T.J., and Habener, J.F. (1999). The glucagon-like peptides. Endocr Rev 20, 876-913.
Kim, B., Backus, C., Oh, S., Hayes, J.M., and Feldman, E.L. (2009). Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294-5301.
Kim, S.H., Hyun, S.H., and Choung, S.Y. (2006). Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol 104, 119-123.
Kim, S.K., and MacDonald, R.J. (2002). Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12, 540-547.
Klein, R., Knudtson, M.D., Klein, B.E., Zinman, B., Gardiner, R., Suissa, S., Sinaiko, A.R., Donnelly, S.M., Goodyer, P., Strand, T., et al. The relationship of retinal vessel diameter to changes in diabetic nephropathy structural variables in patients with type 1 diabetes. Diabetologia 53, 1638-1646.
Kostolanska, J., Jakus, V., and Barak, L. (2009). HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 22, 433-442.
Lee, M.J., Rao, Y.K., Chen, K., Lee, Y.C., and Tzeng, Y.M. (2009). Effect of flavonol glycosides from Cinnamomum osmophloeum leaves on adiponectin secretion and phosphorylation of insulin receptor-beta in 3T3-L1 adipocytes. J Ethnopharmacol 126, 79-85.
Liadis, N., Murakami, K., Eweida, M., Elford, A.R., Sheu, L., Gaisano, H.Y., Hakem, R., Ohashi, P.S., and Woo, M. (2005). Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol 25, 3620-3629.
Liu, C.T., Sheen, L.Y., and Lii, C.K. (2007). Does garlic have a role as an antidiabetic agent? Mol Nutr Food Res 51, 1353-1364.
Marshall, S.M. (2004). Recent advances in diabetic nephropathy. Clin Med 4, 277-282.
McIntosh, C.H., Widenmaier, S., and Kim, S.J. (2009). Glucose-dependent insulinotropic polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitam Horm 80, 409-471.
Molitch, M.E., DeFronzo, R.A., Franz, M.J., Keane, W.F., Mogensen, C.E., Parving, H.H., and Steffes, M.W. (2004). Nephropathy in diabetes. Diabetes Care 27 Suppl 1, S79-83.
Nahas, R., and Moher, M. (2009). Complementary and alternative medicine for the treatment of type 2 diabetes. Can Fam Physician 55, 591-596.
Nathan, D.M., Buse, J.B., Davidson, M.B., Ferrannini, E., Holman, R.R., Sherwin, R., and Zinman, B. (2009). Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 52, 17-30.
Navarro-Casado, L., Juncos-Tobarra, M.A., Chafer-Rudilla, M., Iniguez-de Onzono, L., Blazquez-Cabrera, J.A., and Miralles-Garcia, J.M. Effect of Experimental Diabetes and STZ on Male Fertility Capacity: Study in Rats. J Androl.
Nguyen, T.T., Wang, J.J., and Wong, T.Y. (2007). Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications. Diabetes Care 30, 2708-2715.
Nikoulina, S.E., Ciaraldi, T.P., Mudaliar, S., Mohideen, P., Carter, L., and Henry, R.R. (2000). Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes 49, 263-271.
Oda, E., Kawai, R., Sukumaran, V., and Watanabe, K. (2009). Uric acid is positively associated with metabolic syndrome but negatively associated with diabetes in Japanese men. Intern Med 48, 1785-1791.
Okamoto, H., and Takasawa, S. (2002). Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in beta-cells. Diabetes 51 Suppl 3, S462-473.
Okamoto, T., Kanemoto, N., Ohbuchi, Y., Okano, M., Fukui, H., and Sudo, T. (2008). Characterization of STZ-Induced Type 2 Diabetes in Zucker Fatty Rats. Exp Anim 57, 335-345.
Ortenblad, N., Mogensen, M., Petersen, I., Hojlund, K., Levin, K., Sahlin, K., Beck-Nielsen, H., and Gaster, M. (2005). Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta 1741, 206-214.
Pagano, L., Proietto, M., and Biondi, R. (2009). [Diabetic peripheral neuropathy: reflections and drug-rehabilitative treatment]. Recenti Prog Med 100, 337-342.
Peng, X.Y., Wang, F.H., Liang, Y.B., Wang, J.J., Sun, L.P., Peng, Y., Friedman, D.S., Liew, G., Wang, N.L., and Wong, T.Y. Retinopathy in persons without diabetes: the Handan Eye Study. Ophthalmology 117, 531-537, 537 e531-532.
Penumathsa, S.V., Thirunavukkarasu, M., Samuel, S.M., Zhan, L., Maulik, G., Bagchi, M., Bagchi, D., and Maulik, N. (2009). Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury. Biochim Biophys Acta 1792, 39-48.
Perkins, B.A., and Krolewski, A.S. (2009). Early nephropathy in type 1 diabetes: the importance of early renal function decline. Curr Opin Nephrol Hypertens 18, 233-240.
Ping, H., Zhang, G., and Ren, G. Antidiabetic effects of cinnamon oil in diabetic KK-A(y) mice. Food Chem Toxicol.
Post, E.M., Moore, J.D., Ihrke, J., and Aisenberg, J. (2000). Fructosamine levels demonstrate improved glycemic control for some children attending a diabetes summer camp. Pediatr Diabetes 1, 204-208.
Pozefsky, T., Felig, P., Tobin, J.D., Soeldner, J.S., and Cahill, G.F., Jr. (1969). Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest 48, 2273-2282.
Putz, Z., Kempler, P., and Jermendy, G. (2009). [Diabetes-specific complications in prediabetes]. Orv Hetil 150, 2139-2145.
Rathmann, W., Funkhouser, E., Dyer, A.R., and Roseman, J.M. (1998). Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol 8, 250-261.
Rayner, D.V., Thomas, M.E., and Trayhurn, P. (1994). Glucose transporters (GLUTs 1-4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Can J Physiol Pharmacol 72, 476-479.
Ritov, V.B., Menshikova, E.V., Azuma, K., Wood, R.J., Toledo, F.G., Goodpaster, B.H., Ruderman, N.B., and Kelley, D.E. (2009). Deficiency of Electron Transport Chain in Human Skeletal Muscle Mitochondria in Type 2 Diabetes Mellitus and Obesity. Am J Physiol Endocrinol Metab.
Roden, M., Mariz, S., Brazzale, A.R., and Pacini, G. (2009). Free fatty acid kinetics during long-term treatment with pioglitazone added to sulfonylurea or metformin in Type 2 diabetes. J Intern Med 265, 476-487.
Rosolowsky, E.T., Ficociello, L.H., Maselli, N.J., Niewczas, M.A., Binns, A.L., Roshan, B., Warram, J.H., and Krolewski, A.S. (2008). High-normal serum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 3, 706-713.
Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.
Sathiyapriya, V., Bobby, Z., Agrawal, A., and Selvaraj, N. (2009). Protein glycation, insulin sensitivity and pancreatic beta cell function in high-risk, non-diabetic, first degree relatives of patients with type 2 diabetes. Indian J Physiol Pharmacol 53, 163-168.
Simon, D. [Epidemiological features of type 2 diabetes]. Rev Prat 60, 469-473.
Singhania, N., Puri, D., Madhu, S.V., and Sharma, S.B. (2008). Assessment of oxidative stress and endothelial dysfunction in Asian Indians with type 2 diabetes mellitus with and without macroangiopathy. QJM 101, 449-455.
Solomon, T.P., and Blannin, A.K. (2007). Effects of short-term cinnamon ingestion on in vivo glucose tolerance. Diabetes Obes Metab 9, 895-901.
Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C.L., and Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52, 313-320.
Subash Babu, P., Prabuseenivasan, S., and Ignacimuthu, S. (2007). Cinnamaldehyde--a potential antidiabetic agent. Phytomedicine 14, 15-22.
Thomson, S.E., McLennan, S.V., Kirwan, P.D., Heffernan, S.J., Hennessy, A., Yue, D.K., and Twigg, S.M. (2008). Renal connective tissue growth factor correlates with glomerular basement membrane thickness and prospective albuminuria in a non-human primate model of diabetes: possible predictive marker for incipient diabetic nephropathy. J Diabetes Complications 22, 284-294.
Thorn, L.M., Forsblom, C., Waden, J., Saraheimo, M., Tolonen, N., Hietala, K., and Groop, P.H. (2009). Metabolic syndrome as a risk factor for cardiovascular disease, mortality, and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care 32, 950-952.
Toledo, F.G., Menshikova, E.V., Ritov, V.B., Azuma, K., Radikova, Z., DeLany, J., and Kelley, D.E. (2007). Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56, 2142-2147.
Vahl, T., and D''Alessio, D. (2003). Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Curr Opin Clin Nutr Metab Care 6, 461-468.
Vazquez-Mellado, J., Garcia, C.G., Vazquez, S.G., Medrano, G., Ornelas, M., Alcocer, L., Marquez, A., and Burgos-Vargas, R. (2004). Metabolic syndrome and ischemic heart disease in gout. J Clin Rheumatol 10, 105-109.
Verspohl, E.J., Bauer, K., and Neddermann, E. (2005). Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro. Phytother Res 19, 203-206.
Wang, S.Y., Yang, C.W., Liao, J.W., Zhen, W.W., Chu, F.H., and Chang, S.T. (2008). Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine.
Wilcox, R., Kupfer, S., and Erdmann, E. (2008). Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial In macro Vascular Events (PROactive 10). Am Heart J 155, 712-717.
Xu, G., Stoffers, D.A., Habener, J.F., and Bonner-Weir, S. (1999). Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270-2276.
Yip, R.G., and Wolfe, M.M. (2000). GIP biology and fat metabolism. Life Sci 66, 91-103.
Zhang, W., Xu, Y.C., Guo, F.J., Meng, Y., and Li, M.L. (2008). Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin Med J (Engl) 121, 2124-2128.
Zhao, X., Zhu, J.X., Mo, S.F., Pan, Y., and Kong, L.D. (2006). Effects of cassia oil on serum and hepatic uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J Ethnopharmacol 103, 357-365.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 土肉桂葉精油對糖尿病大鼠之抗氧化及抗發炎作用
2. 利用 STZ誘發之糖尿病大鼠及C2C12細胞株探討土肉桂葉精油之抗糖尿病作用機制
3. 土肉桂葉精油於第2型糖尿病小鼠模式胰島素增敏及腎臟保護作用之探討
4. 土肉桂葉精油對於STZ誘發之糖尿病大鼠發炎體相關蛋白質表現及腎臟病變發展之影響
5. 台灣土肉桂葉精油與其活性成分枷羅木醇及肉桂醛對於potassium oxonate和uric acid誘發高血尿酸小鼠血糖及血壓調控因子之影響
6. 土肉桂葉子熱水抽出物對動物降血脂之功效及其成分解析
7. 土肉桂葉精油對於LPS誘發大鼠腸黏膜嗜中性球浸潤及發炎作用之影響
8. 台灣土肉桂葉精油及其活性成分枷羅木醇及肉桂醛在小鼠之抗高尿酸血症作用
9. 土肉桂萃取物對於胃幽門螺旋桿菌與受感染人類胃上皮細胞之抗微生物與抗發炎效應
10. 台灣土肉桂抑菌性及抗氧化性之研究
11. 台灣土肉桂葉精油與其活性成分枷羅木醇及肉桂醛對potassium oxonate和尿酸誘發高血尿酸小鼠之肝、腎保護作用探討
12. 台灣土肉桂水萃取物之功效分析
13. 土肉桂葉精油對於內毒素誘發小鼠全身性發炎反應症候群中腸黏膜損傷之影響
14. 臺灣原生種土肉桂 ( Cinnamomum osmophloeum Kaneh. ) 樹葉精油中的肉桂醛於活體內的細胞激素調節作用
15. 臺灣原生種土肉桂葉之調節血糖功效評估與產品試量產