(3.238.173.209) 您好!臺灣時間:2021/05/17 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅均
研究生(外文):Ya-Chun
論文名稱:探討Daxx在大腸直腸癌中得生物功能與臨床意義
論文名稱(外文):Biological Functions and Clincalpathological Characteristics of Daxx in Colorectal Cancer
指導教授:曾淑玲曾淑玲引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸直腸癌是一個預後較差的惡性腫瘤,通常在癌症初期症狀都不明顯,發現時大都屬於癌症晚期,且已有肝臟轉移的現象。CEA (Carcinoembryonic Antigen)可作為臨床上大腸直腸癌診斷鑑別工具,但是除了癌症之外,在腸道炎症中CEA數值也會偏高,所以找尋更好的生物標記以診斷結腸直腸癌是未來的重要方向。
Daxx在細胞核中扮演一個重要轉錄抑制者,實驗室先前的結果發現Daxx會抑制Wnt之轉錄活性,在結腸組織中明顯減少,透過microarray篩選出CD24以及EHF(Ets homologous factor)可能會受到Daxx蛋白表現所調控。有研究發現在多種惡性腫瘤中CD24會過度表現,增加癌細胞的侵襲力並可能縮短癌症病患的存活率,EHF則透過轉錄調控方式扮演腫瘤抑制的功能。因此在本研究論文中進一步偵測Daxx蛋白和β-catenin以及CD24蛋白或EHF蛋白在大腸直腸癌不同的癌症分期間之相關性。
首先收集106位大腸直腸癌病人檢體,分析病人手術前及手術後的CEA值與Daxx蛋白表現比較呈負相關,手術前≧ 5ng/ml 的CEA值有39位(佔45.1%),而Daxx<0.86有58位(佔67.4%),因此Daxx蛋白表現有潛力彌補CEA的診斷限制。以西方墨點法分析各蛋白的表現差異,發現Daxx的蛋白與CD24蛋白以及EHF蛋白的表現都呈正相關性(P=0.041, P=0.017);另外EHF蛋白表現量偏低者,在侵襲深度T3期有53位佔71.6%);而在侵襲深度T4期有4位(佔100%)。也就是說EHF蛋白表現愈低,其癌細胞侵襲之深度亦增加(P<0.05)。
在細胞實驗中利用Immunofluorscence確認Daxx蛋白、CD24蛋白以及β-catenin在細胞內的表現位置,發現在Daxx靜默的Hct116細胞中,CD24的表現明顯地由細胞膜轉位到細胞質。並發現Daxx蛋白表現降低,確實會增加該細胞株的生長速率以及移行能力。如此上述,Daxx蛋白及其調控路徑的建立和研究,可以讓我們更了解結腸直腸癌的形成機制,進而找出相關的標記如:CD24、EHF,可做為日後的研究方向。


ABSTRACT
Colorectal cancer (CRC) is one of the most malignancies in Taiwan. Early symptom is not easy to diagnosis, but lately stage almost has metastasis and worse prognosis. CEA level is considered as a predictive factor in colorectal cancer patients. But elevated CEA was found in other malignancies and inflammation. So, it is very important to found up another biological tumor marker to instead of limited CEA.
In our previous study, Daxx affected Tcf4 activity and regulated cell proliferation and differentiation in colon cells. CD24 and EHF were candidate genes regulated by Daxx expressing which were identified by gene microarray. Because of higher CD24 expression is associated with metastasis and shorter survival in various malignant tumors. On the other hand, Individual EHF can inhibit carcinogenesis by transcriptional regulation. It is our interesting to understand correlation between Daxx, β-catenin and CD24 or EHF in CRC carcinogenesis.
First, in clinical 106 paired CRC tissues analysis, a negative correlation was observed between CEA and Daxx. There were 39 patients (45.3%) with elevated CEA, but 58 patients (67.4%) with decreased Daxx expression, so Daxx may have diagnostic potential instead to CEA. In protein analysis, positive correlation was observed between CD24 or EHF with Daxx by Pearson’s correlation coefficient test (p=0.041, p=0.017). Reduction of EHF expression was relative to depth of invasion (p<0.05).
In cell lines, immunofluorescence analysis was performed, and CD24 was translocated from membrane to cytosol in Daxx knockdown stabled Hct116. On the other hand, cellular growth and cellular migration were increased rather than control cells. With our investing- ation above, Daxx may play a role to influence a prognostic factor, CD24 or EHF in CRC model, and further evidences will be investigated .


縮寫(Abbreviation) --------------------------------------------------------------------------1
壹、緒論
(一)大腸直腸癌(Colorectal cancer, CRC)------------------------------------------ ----2
(二)大腸直腸癌之分期----------------------------------------------------------------- ---3
(三)癌胚抗原 (Carcinoembryonic Antigen, CEA) ------------------------------ ----4
(四) Wnt訊息路徑(Wnt signaling pathway)--------------------------------------- --5
(五) Daxx (Death associated protein)------------------------------------------------ -7
(六)CD24------------------------------------------------------------------------------- -------9
(七)專一性上皮ETS轉錄因子-3(Epithelial-specific ETS, ESE-3)---------------11
貳、研究動機--------------------------------------------------------------------------------------13
叁、研究材料及方法
(一)細胞培養 (cell culture)------------------------------------------------------------14
(二)臨床組織------------------------------------------------------------------------------15
(三)西方墨點轉漬分析-----------------------------------------------------------------16
(四)免疫螢光染色( Immuno-fluorescence stain )-------------------------------18
(五)細胞移行試驗( Cell Migration assay )-----------------------------------------19
(六)統計分析(Statistical Analysis)---------------------------------------------------20
肆、實驗流程-------------------------------------------------------------------------------------21
伍、實驗結果
(一)探討Daxx是否能取代CEA之診斷於大腸直腸癌檢體---------------------22
(二)探討於大腸直腸癌組織檢體中Daxx與Wnt活性之相關-----------------23
(三)探討於大腸直腸癌中Daxx蛋白對CD24蛋白表現之影響
(1) CD24蛋白在大腸直腸癌組織檢體之表現-------------------------------24
(2)比較Daxx的蛋白表現與CD24蛋白表現相-------------------------------25
(四)探討於大腸直腸癌中Daxx蛋白對EHF蛋白表現之影響
(1) EHF蛋白在大腸直腸癌組織檢體之表現--------------------------------25
(2)比較Daxx的蛋白表現與EHF蛋白表現相關性--------------------------26
(3)比較CD24的蛋白表現與EHF蛋白表現相關性--------------------------27
(五)探討shLuci細胞株和shDaxx之Daxx穩定靜默細胞株蛋白之生物功能
(1)檢測CD24在不同細胞株的表現--------------------------------------------27
(2)利用免疫螢光染色於大腸直腸癌細胞株鑑定CD24和其他蛋白
在細胞內之表現位置 -------------------------------------------------------27
(3)不同細胞株經由shDaxx之Daxx穩定靜默處理後之細胞生
長變化-----------------------------------------------------------------------------29
(4)Daxx蛋白會減少對人類大腸直腸癌細胞株Hct116之移行能力
--------------------------------------------------------------------------------------30
陸、討論
(一)探討Daxx是否能取代CEA之診斷於大腸直---------------------------------31
(二)探討於大腸直腸癌組織檢體中Wnt訊息傳遞途徑之活性-------------32
(三)探討於大腸直腸癌中Daxx蛋白對CD24蛋白表現之影響---------------33
(四)探討於大腸直腸癌中Daxx蛋白對EHF蛋白表現之影響-----------------34
(五)探討於大腸直腸癌中CD24蛋白在細胞內之表現位置------------------34
(六)探討shLuci細胞株和shDaxx之Daxx穩定靜默細胞株蛋白之生物功能----------------------------------------------------------------------------------------35
柒、結論------------------------------------------------------------------------------------38
捌、結果圖與附圖-----------------------------------------------------------------------------39
Fig.1A、------------------------------------------------------------------------------------39
Fig.1B、Daxx蛋白表現與手術前CEA值和手術後CEA值相互比較--------40
Fig.1C、Daxx蛋白表現與手術後CEA值相較後可補足CEA之限制--------40
Fig.2、各蛋白在大腸直腸癌檢體中的表現趨勢------------------------------41
Table.1、Daxx的蛋白表現與β-catenin蛋白表現呈明顯顯著-----------42
Table.2、Daxx的蛋白表現與CD24蛋白表現呈明顯顯著-------------------43
Fig.3、Daxx的蛋白表現與CD24蛋白表現呈正相關性-----------------------44
Table.3、Daxx的蛋白表現與EHF蛋白表現無明顯顯著----------------------45
Fig.4、Daxx的蛋白表現與EHF蛋白表現呈正相關性-------------------------46
Fig.5、CD24的蛋白表現與EHF蛋白表現呈正相關性-------------------------47
Fig.6、在人類細胞株中檢測各蛋白的表現-------------------------------------48
Fig.7A、利用免疫螢光染色觀察人類大腸直腸癌細胞株Hct116細胞內
Daxx的表現---------------------------------------------------------------------49
Fig.7B、利用免疫螢光染色觀察人類大腸直腸癌細胞株Hct116細胞內
β-catenin的表現---------------------------------------------------------------50
Fig.7C、利用免疫螢光染色觀察人類大腸直腸癌細胞株Hct116細胞內
CD24的表現-------------------------------------------------------------------51
Fig.7D、利用免疫螢光染色觀察人類大腸直腸癌細胞株Hct116細胞內
p53的表現---------------------------------------------------------------------52
Fig.8A、免疫螢光染色觀察人類腎臟上皮細胞株293T細胞內Daxx的
表現-----------------------------------------------------------------------------53
Fig.8B、免疫螢光染色觀察人類腎臟上皮細胞株293T細胞內β-catenin的
表現-----------------------------------------------------------------------------54
Fig.8C、免疫螢光染色觀察人類腎臟上皮細胞株293T細胞內CD24的
表現-----------------------------------------------------------------------------55
Fig.8D、免疫螢光染色觀察人類腎臟上皮細胞株293T細胞內p53的
表現-----------------------------------------------------------------------------56
Fig9、Daxx表現減少對人類腎臟上皮細胞株293T的生長沒有明顯影響------------------------------------------------------------------------------------57
Fig10、Daxx表現減少會促進人類大腸直腸癌細胞株Hct116的生長----58
Fig.11、Daxx表現減少會促進人類大腸直腸癌細胞株Hct116多於人類腎
臟上皮細胞株之移行能力------------------------------------------------59
Fig.12、Daxx蛋白的再表現會減少Hct116Daxx靜默穩定細胞株之移行
能力-----------------------------------------------------------------------------61
玖、參考文獻-----------------------------------------------------------------------------------65



1.Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43-66.
2.GOLD P, FREEDMAN SO. Demonstration of tumor-specific antigen in human colonic carcinoma by immunological tolerance and absor- ption techniques. J Exp Med 1965; 121:439–462.
3.Fletcher RH. Carcinoembryonic antigen. Ann Intern Med 1986; 104: 66.
4.Cutait R, Alves VA, Lopes LC, Cutait DE, Borges JL, Singer J, da Silva JH, Goffi FS. Restaging of colorectal cancer based on the identification of lymph node micrometastases hrough immunoperoxidase staining of CEA and cytokeratins. Dis Colon Rectum 1991; 34(10):917–920.
5.Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 1999; 18: 7860-7872.
6.Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14: 1837-1851.
7.Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003; 1653: 1-24.
8.Taipale J, Beachy PA. The Hedgehog and Wnt signaling pathways in cancer. Nature 2001; 411: 349-354.
9.Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311-320.
10.Wong NA, Pignatelli M. Beta-catenin--a linchpin in colorectal car- cinogenesis? Am J Pathol 2002; 160: 389-401.
11.Brabletz T, Herrmann K, Jung A, Faller G, Kirchner T. Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am J Pathol 2000; 156: 865-870.
12.Kirchner T, Brabletz T. Patterning and nuclear beta-catenin ex- pression in the colonic adenoma-carcinoma sequence. Analogies with embryonic gastrulation. Am J Pathol 2000; 157:1113-1121.
13.Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T. Nuclear overexpression of the oncoprotein betacatenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 1998; 194: 701-704.
14.Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 2005; 310: 1504-1510.
15.Yang L, Lin C, Liu ZR. P68 RNA helicase mediates PDGF induced epithelial mesenchymal transition by displacing Axin from beta- catenin. Cell 2006; 127: 139-155.
16.Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006; 127: 679-695.
17.Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G. The Pax3- FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J 1999; 18:3702–3711.
18.Kiriakidou M, Driscoll DA, Lopez-Guisa JM, Strauss JF 3rd. Cloning and expression of primate Daxx cDNAs and mapping of the human gene to chromosome 6p21.3 in the MHC region. DNA Cell Biol 1997; 16:1289–1298.
19.Li H, Leo C, Zhu J, Wu X, O''Neil J, Park EJ, Chen JD. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 2000; 20:1784–1796.
20.Pluta AF, Earnshaw WC, Goldberg IG. Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain- binding protein implicated in Fas-mediated cell death. J Cell Sci 1998; 111 (14):2029-2041.
21.Cermák L, Símová S, Pintzas A, Horejsí V, Andera L. Molecular mechanisms involved in CD43-mediated apoptosis of TF-1 cells: roles of transcription, Daxx expression and adhesion molecules. J Biol Chem 2002; 277:7955–7961.
22.Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat. Cell Biol 2001; 3: 708–714.
23.Torii S, Egan DA, Evans RA, Reed JC. Daxx regulates Fas induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J 1999; 18:6037–6049.
24.Yang X, Khosravi-Far R, Chang HY, Baltimore D. Daxx, a novel Fas- binding protein that activates JNK and apoptosis. Cell 1997; 89: 1067– 1076.
25.Li R, Pei H, Watson DK, Papas TS. EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 2000; 19:745–753.
26.Ohiro Y, Usheva A, Kobayashi S, Duffy SL, Nantz R, Gius D, Horikoshi N. Inhibition of stress-inducible kinase pathways by tumorigenic mutant p53. Mol Cell Biol 2003; 23:322–334.
27.Charette SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxx- mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20: 7602– 7612.
28.Hofmann H, Sindre H, Stamminger T. Functional interaction betw- een the pp71 protein of human cytomegalovirus and the PML-i nteracting protein human Daxx. J Virol 2002; 76:5769–5783.
29.Li XD, Mäkelä TP, Guo D, Soliymani R, Koistinen V, Vapalahti O, Vaheri A, Lankinen H. Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. J Gen Virol 2002; 83: 759 –766.
30.Lin DY, Shih HM. Essential role of the 58-kDa microspherule protein in the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar sequestration. J Biol Chem 2002; 277:25446 – 25456.
31.Ryu SW, Chae SK, Kim E. Interaction of Daxx, a Fas binding protein, with sentrin and Ubc9. Biochem. Biophys Res Commun 2000; 279: 6–10.
32.Florin L, Schäfer F, Sotlar K, Streeck RE, Sapp M. Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 2002; 295:97–107.
33.Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D. Activation of apoptosis signal- regulating kinase 1 (ASK1) by the adapter protein daxx. Science 1998; 281:1860–1863.
34.Kadosh D, Struhl K. Repression by Ume6 involves recruitment of a complex containing sin3 corepressor and Rpd3 Histone deacetylase to target promoters. Cell 1997; 89:365–371.
35.Ko YG, Kang YS, Park H, Seol W, Kim J, Kim T, Park HS, Choi EJ, Kim S. Apoptosis signal-regulating kinase 1 controls the proapoptotic func -tion of death-associated protein (Daxx) in the cytoplasm. J Biol Chem 2001; 276:39103–39106.
36.Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell 2000; 102:1–4.
37.Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–776.
38.Shi Y. Mechanisms of caspase activation and inhibition during apop- tosis. Mol. Cell 2002; 9:459–470.
39.Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenor- habditis elegans. Nature 1998; 391:806–811.
40.Genini D, Sheeter D, Rought S, Zaunders JJ, Susin SA, Kroemer G, Richman DD, Carson DA, Corbeil J, Leoni LM. HIV induces lymphocyte apoptosis by a p53-initiated, mitochondrial-mediated mechanism. FASEB J 2001; 15:5–6.
41.Suzuki T, Kiyokawa N, Taguchi T, Sekino T, Katagiri YU, Fujimoto J. CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system. J Immunol 2001; 166:5567–5577.
42.Kadmon G, von Bohlen und Halbach F, Schachner M, Altevogt P. Differential, LFA-1-sensitive effects of antibodies to nectadrin, the heat-stable antigen, on B lymphoblast aggregation and signal trans- duction. Biochem Biophys Res Commun 1994; 198: 1209–1215.
43.Sammar M, Gulbins E, Hilbert K, Lang F, Altevogt P. Mouse CD24 as a signaling molecule for integrin-mediated cell binding: functional and physical association with src-kinases. Biochem Biophys Res Commun. 1997; 234:330–334.
44.Kadmon G, Eckert M, Sammar M, Schachner M, Altevogt P. Nect -adrin, the heat-stable antigen, is a cell adhesion molecule. J Cell Biol 1992; 118:1245–1258.
45.Poncet C, Frances V, Gristina R, Scheiner C, Pellissier JF, Figarella- Branger D. CD24, a glycosylphosphatidylinositolanchored molecules is transiently expressed during the development of human central nervous system and is a marker of human neural cell lineage tumors. Acta Neuropathol 1996; 91:400–408.
46.Cram DS, McIntosh A, Oxbrow L, Johnston AM, DeAizpurua HJ. Differential mRNA display analysis of two related but functionally distinct rat insulinoma (RIN) cell lines: identification of CD24 and its expression in the developing pancreas. Differentiation 1999; 64: 237–246.
47.Shirasawa T, Akashi T, Sakamoto K, Takahashi H, Maruyama N, Hirokawa K. Gene expression of CD24 core peptide molecule in developing brain and developing non-neural tissues. Dev Dyn 1993; 198:1–13.
48.Figarella-Branger D, Moreau H, Pellissier JF, Bianco N, Rougon G. CD24, a signal-transducing molecule expressed on human B lympho -cytes, is a marker for human regenerating muscle. Acta Neuro- pathol 1993; 86:275–284.
49.Redondo P, García-Foncillas J, Okroujnov I, de Felipe I, Quintanilla E. CD24 expression on human keratinocytes. Exp Dermatol 1998; 7: 175–178.
50.Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, Yagita H, Sleeman JP. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 2005; 65:10783–10793.
51.Senner V, Sturm A, Baur I, Schrell UH, Distel L, Paulus W. CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol 1999; 58:795–802.
52.Huang LR, Hsu HC. Cloning and expression of CD24 gene in human hepatocellular carcinoma: a potential early tumor marker gene correlates with p53 mutation and tumor differentiation. Cancer Res 1995; 55:4717–4721.
53.Sagiv E, Kazanov D, Arber N. CD24 plays an important role in the carcinogenesis process of the pancreas. Biomed Pharmacother 2006; 60:280–284.
54.Sagiv E, Memeo L, Karin A, Kazanov D, Jacob-Hirsch J, Mansukhani M, Rechavi G, Hibshoosh H, Arber N. CD24 is a new oncogene, early at the multistep process of colorectal cancer carcinogenesis. Gastro- enterology 2006; 131:630–639.
55.Kristiansen G, Schluns K, Yongwei Y, Denkert C, Dietel M, Petersen I. CD24 is an independent prognostic marker of survival in non-small cell lung cancer patients. Br J Cancer 2003; 88:231–236.
56.Aigner S, Sthoeger ZM, Fogel M, Weber E, Zarn J, Ruppert M, Zeller Y, Vestweber D, Stahel R, Sammar M, Altevogt P. CD24, a mucin-type glycol- protein, is a ligand for P-selectin on human tumor cells. Blood 1997; 89:3385–3895.
57.Aigner S, Ramos CL, Hafezi-Moghadam A, Lawrence MB, Friederichs J, Altevogt P, Ley K. CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 1998; 12: 1241–1251.
58.Friederichs J, Zeller Y, Hafezi-Moghadam A, Grone HJ, Ley K, Altevogt P. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res 2000; 60:6714–6722.
59.Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schlüns K, Denkert C, Dahl E, Pilarsky C, Altevogt P, Guski H, Dietel M. CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 2003; 9: 4906–4913.
60.Kristiansen G, Pilarsky C, Pervan J, Stürzebecher B, Stephan C, Jung K, Loening S, Rosenthal A, Dietel M. CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 2004; 58: 183–92.
61.Zarn JA, Zimmermann SM, Pass MK, Waibel R, Stahel RA. Association of CD24 with the kinase c-fgr in a small cell lung cancer cell line and with the kinase lyn in an erythroleukemia cell line. Biochem Biophys Res Commun 1996; 225:384–391.
62.Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ, Lockhart DJ, Burger RA, Hampton GM. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 2001; 98:1176–1181.
63.Senner V, Sturm A, Baur I, Schrell UH, Distel L, Paulus W. CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol 1999; 58:795–802.
64.Huang LR, Hsu HC. Cloning and expression of CD24 gene in human hepatocellular carcinoma: a potential early tumor marker gene correlates with p53 mutation and tumor differentiation. Cancer Res 1995; 55:4717–4721.
65.Sagiv E, Kazanov D, Arber N. CD24 plays an important role in the carcinogenesis process of the pancreas. Biomed Pharmacother 2006; 60:280–284.
66.Sagiv E, Memeo L, Karin A, Kazanov D, Jacob-Hirsch J, Mansukhani M, Rechavi G, Hibshoosh H, Arber N.CD24 is a new oncogene, early at the multistep process of colorectal cancer carcinogenesis. Gastro -enterology 2006; 131:630–639.
67.Kristiansen G, Schlüns K, Yongwei Y, Denkert C, Dietel M, Petersen I.CD24 is an independent prognostic marker of survival in non-small cell lung cancer patients. Br J Cancer 2003; 88: 231–236.
68.Choi YL, Kim SH, Shin YK, Hong YC, Lee SJ, Kang SY, Ahn G. Cyto- plasmic CD24 expression in advanced ovarian serous borderline tumors. Gynecol Oncol 2005; 97:379–386.
69.Weichert W, Denkert C, Burkhardt M, Gansukh T, Bellach J, Altevogt P, Dietel M, Kristiansen G. Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. Clin Cancer Res 2005; 11:6574–6581.
70.Chou YY, Jeng YM, Lee TT, Hu FC, Kao HL, Lin WC, Lai PL, Hu RH, Yuan RH. Cytoplasmic CD24 expression is a novel prognostic factor in diffuse-type gastric adenocarcinoma. Ann Surg Oncol 2007; 14: 2748–2758.
71.Yang XR, Xu Y, Yu B, Zhou J, Li JC, Qiu SJ, Shi YH, Wang XY, Dai Z, Shi GM, Wu B, Wu LM, Yang GH, Zhang BH, Qin WX, Fan J. CD24 Is a Novel Predictor for Poor Prognosis of Hepatocellular Carcinoma after Surgery. Clin Cancer Res 2009; 15(17):5518–5527.
72.Sano A, Kato H, Sakurai S, Sakai M, Tanaka N, Inose T, Saito K, Sohda M, Nakajima M, Nakajima T, Kuwano H. CD24 Expression Is a Novel Prognostic Factor in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2009; 16:506–514.
73.Oikawa T, Yamada T. Molecular biology of the ETS family of trans- cripttion factors. Gene 2003; 303: 11–34.
74.Seth A, Watson DK. ETS transcription factors and their emerging roles in human cancer. Eur J Cancer 2005; 41: 2462–2478.
75.Kas K, Finger E, Grall F, Gu X, Akbarali Y, Boltax J, Weiss A, Oettgen P, Kapeller R, Libermann TA. ESE-3, a novel member of an epithelium- specific ETS transcription factor subfamily, demonstrates different target gene specificity from ESE-1. J Biol Chem 2000; 275: 29 86–2998.
76.Schedin PJ, Eckel-Mahan KL, McDaniel SM, Prescott JD, Brodsky KS, Tentler JJ, Gutierrez-Hartmann A. ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mam- mary epithelial cells. Oncogene 2004; 23: 1766–1779.
77.Tugores A, Le J, Sorokina I, Snijders AJ, Duyao M, Reddy PS, Carlee L, Ronshaugen M, Mushegian A, Watanaskul T, Chu S, Buckler A, Emtage S, McCormick MK. The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent transcriptional repressor down- stream of MAPK signaling cascades. J Biol Chem 2001; 276: 203 97–20406.
78.Liu AY, Corey E, Vessella RL, Lange PH, True LD, Huang GM, Nelson PS, Hood L. Identification of differentially expressed prostate genes: increased expression of transcription factor ETS-2 in prostate cancer. Prostate 1997; 30: 145–153.
79.Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, Nau M, Ravindranath L, Chen Y, Dobi A, Srikantan V, Sesterhenn IA, McLeod DG, Vahey M, Moul JW, Srivastava S. Frequent over- expression of ETS-related gene-1 (ERG1) in prostate cancer transcripttome. Oncogene 2005; 24: 3847–3852.
80.Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, Cao X, Wei JT, Rubin MA, Shah RB, Chinnaiyan AM. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006; 66: 3396–3400.
81.Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.
82.Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C. Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 2006; 25, 4361–4369.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top