|
1.Jemal, A., et al., Cancer statistics, 2008. CA Cancer J Clin, 2008. 58(2): p. 71-96. 2.Vogelstein, B. and K.W. Kinzler, The genetic basis of human cancer. 2 ed. Colorectal tumors, ed. B. Vogelstein and K.W. Kinzler. 2002, New York: McGraw-Hill, Medical Pub. Division. 583-612. 3.DeVita, V.T., T.S. Lawrence, and S.A. Rosenberg, DeVita, Hellman, and Rosenberg''s cancer : principles & practice of oncology. Colon cancer, ed. S.L. Libutti SK, Tepper JE. Vol. 1. 2008, Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins. 1232-1284. 4.Abeloff, M.D., Abeloff''s clinical oncology. Colon cancer, ed. H.E. Compton C, Grochow L, Lee F, Ritter M, Niederhuber JE. 2008, Philadelphia: Churchill Livingstone/Elsevier. 1477-1534. 5.Markowitz, S.D., et al., Focus on colon cancer. Cancer Cell, 2002. 1(3): p. 233-6. 6.Andre, T., et al., Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med, 2004. 350(23): p. 2343-51. 7.Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instability in colorectal cancers. Nature, 1997. 386(6625): p. 623-7. 8.Kelsen, D.P., Gastrointestinal oncology : principles and practices. Colorectal cancer: genetic alterations, ed. M.S. Grady WM. 2002, Philadelphia: Lippincott, Williams & Wilkins. 685-702. 9.DeVita, V.T., T.S. Lawrence, and S.A. Rosenberg, DeVita, Hellman, and Rosenberg''s cancer : principles & practice of oncology. Molecular biology of colorectal cancer, ed. B.G. Fearon ER. 2008, Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins. 218-231. 10.Barber, T.D., et al., Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A, 2008. 105(9): p. 3443-8. 11.Leach, F.S., et al., Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 1993. 75(6): p. 1215-25. 12.Bronner, C.E., et al., Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 1994. 368(6468): p. 258-61. 13.Lynch, H.T., et al., Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam Cancer, 2008. 7(1): p. 27-39. 14.Boland, C.R., et al., The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch syndrome: from bench to bedside. Fam Cancer, 2008. 7(1): p. 41-52. 15.Issa, J.P., CpG island methylator phenotype in cancer. Nat Rev Cancer, 2004. 4(12): p. 988-93. 16.Kondo, Y. and J.P. Issa, Epigenetic changes in colorectal cancer. Cancer Metastasis Rev, 2004. 23(1-2): p. 29-39. 17.Korinek, V., et al., Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 1997. 275(5307): p. 1784-7. 18.Morin, P.J., et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 1997. 275(5307): p. 1787-90. 19.Goss, K.H. and J. Groden, Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol, 2000. 18(9): p. 1967-79. 20.DeVita, V.T., T.S. Lawrence, and S.A. Rosenberg, DeVita, Hellman, and Rosenberg''s cancer : principles & practice of oncology. Molecular biology of colorectal cancer, ed. B.G. Fearon ER. 2008, Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins. 1218-1231. 21.Baker, S.J., et al., Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 1990. 249(4971): p. 912-5. 22.Shiota, G., et al., Circulating p53 antibody in patients with colorectal cancer: relation to clinicopathologic features and survival. Dig Dis Sci, 2000. 45(1): p. 122-8. 23.Grady, W.M., et al., Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res, 1999. 59(2): p. 320-4. 24.Grady, W.M., et al., Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res, 1998. 58(14): p. 3101-4. 25.Markowitz, S., et al., Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 1995. 268(5215): p. 1336-8. 26.Parsons, R., et al., Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res, 1995. 55(23): p. 5548-50. 27.Shen, L., et al., Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A, 2007. 104(47): p. 18654-9. 28.Bos, J.L., et al., Prevalence of ras gene mutations in human colorectal cancers. Nature, 1987. 327(6120): p. 293-7. 29.Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54. 30.Rajagopalan, H., et al., Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature, 2002. 418(6901): p. 934. 31.Siena, S., et al., Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst, 2009. 101(19): p. 1308-24. 32.Samuels, Y., et al., High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004. 304(5670): p. 554. 33.Yang, X., et al., Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 1997. 89(7): p. 1067-76. 34.Wang, Z.G., et al., PML is essential for multiple apoptotic pathways. Nat Genet, 1998. 20(3): p. 266-72. 35.Zhong, S., et al., Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med, 2000. 191(4): p. 631-40. 36.Michaelson, J.S., et al., Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev, 1999. 13(15): p. 1918-23. 37.Lin, S.C. and Q. Li, Axin bridges Daxx to p53. Cell Res, 2007. 17(4): p. 301-2. 38.Hollenbach, A.D., et al., The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J, 1999. 18(13): p. 3702-11. 39.Li, R., et al., EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene, 2000. 19(6): p. 745-53. 40.Michaelson, J.S. and P. Leder, RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J Cell Sci, 2003. 116(Pt 2): p. 345-52. 41.Kim, E.J., J.S. Park, and S.J. Um, Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML. Nucleic Acids Res, 2003. 31(18): p. 5356-67. 42.Gostissa, M., et al., The transcriptional repressor hDaxx potentiates p53-dependent apoptosis. J Biol Chem, 2004. 279(46): p. 48013-23. 43.Hollenbach, A.D., et al., Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci, 2002. 115(Pt 16): p. 3319-30. 44.Tang, J., et al., Critical role for Daxx in regulating Mdm2. Nat Cell Biol, 2006. 8(8): p. 855-62. 45.Fu, W., et al., MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem, 2009. 284(21): p. 13987-4000. 46.Yang, J.Y., et al., MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol, 2006. 26(19): p. 7269-82. 47.Lane, D.P. and L.V. Crawford, T antigen is bound to a host protein in SV40-transformed cells. Nature, 1979. 278(5701): p. 261-3. 48.Linzer, D.I. and A.J. Levine, Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 1979. 17(1): p. 43-52. 49.DeLeo, A.B., et al., Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A, 1979. 76(5): p. 2420-4. 50.Kress, M., et al., Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol, 1979. 31(2): p. 472-83. 51.Matlashewski, G., et al., Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J, 1984. 3(13): p. 3257-62. 52.Eliyahu, D., et al., Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature, 1984. 312(5995): p. 646-9. 53.Parada, L.F., et al., Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature, 1984. 312(5995): p. 649-51. 54.Jenkins, J.R., K. Rudge, and G.A. Currie, Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature, 1984. 312(5995): p. 651-4. 55.Wolf, D., N. Harris, and V. Rotter, Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell, 1984. 38(1): p. 119-26. 56.Finlay, C.A., et al., Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol, 1988. 8(2): p. 531-9. 57.Eliyahu, D., et al., Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene, 1988. 3(3): p. 313-21. 58.Hinds, P., C. Finlay, and A.J. Levine, Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol, 1989. 63(2): p. 739-46. 59.Eliyahu, D., et al., Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A, 1989. 86(22): p. 8763-7. 60.Finlay, C.A., P.W. Hinds, and A.J. Levine, The p53 proto-oncogene can act as a suppressor of transformation. Cell, 1989. 57(7): p. 1083-93. 61.Diller, L., et al., p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol, 1990. 10(11): p. 5772-81. 62.Mercer, W.E., et al., Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci U S A, 1990. 87(16): p. 6166-70. 63.Chen, P.L., et al., Genetic mechanisms of tumor suppression by the human p53 gene. Science, 1990. 250(4987): p. 1576-80. 64.Hollstein, M., et al., p53 mutations in human cancers. Science, 1991. 253(5015): p. 49-53. 65.O''Rourke, R.W., et al., A potential transcriptional activation element in the p53 protein. Oncogene, 1990. 5(12): p. 1829-32. 66.Greenblatt, M.S., et al., Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res, 1994. 54(18): p. 4855-78. 67.Weinberg, R.A., Tumor suppressor genes. Science, 1991. 254(5035): p. 1138-46. 68.Hale, A.J., et al., Apoptosis: molecular regulation of cell death. Eur J Biochem, 1996. 237(3): p. 884. 69.Elledge, R.M. and W.H. Lee, Life and death by p53. Bioessays, 1995. 17(11): p. 923-30. 70.Evan, G.I., et al., Apoptosis and the cell cycle. Curr Opin Cell Biol, 1995. 7(6): p. 825-34. 71.Bassett, E.A., et al., Structural and functional basis for therapeutic modulation of p53 signaling. Clin Cancer Res, 2008. 14(20): p. 6376-86. 72.el-Deiry, W.S., Regulation of p53 downstream genes. Semin Cancer Biol, 1998. 8(5): p. 345-57. 73.Wang, W., F. Rastinejad, and W.S. El-Deiry, Restoring p53-dependent tumor suppression. Cancer Biol Ther, 2003. 2(4 Suppl 1): p. S55-63. 74.Shangary, S. and S. Wang, Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res, 2008. 14(17): p. 5318-24. 75.Bode, A.M. and Z. Dong, Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer, 2004. 4(10): p. 793-805. 76.Weintraub, H., S. Hauschka, and S.J. Tapscott, The MCK enhancer contains a p53 responsive element. Proc Natl Acad Sci U S A, 1991. 88(11): p. 4570-1. 77.Kastan, M.B., et al., A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 1992. 71(4): p. 587-97. 78.Barak, Y., et al., mdm2 expression is induced by wild type p53 activity. EMBO J, 1993. 12(2): p. 461-8. 79.el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817-25. 80.Okamoto, K. and D. Beach, Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J, 1994. 13(20): p. 4816-22. 81.Miyashita, T. and J.C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 1995. 80(2): p. 293-9. 82.Owen-Schaub, L.B., et al., Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol, 1995. 15(6): p. 3032-40. 83.Shin, T.H., A.J. Paterson, and J.E. Kudlow, p53 stimulates transcription from the human transforming growth factor alpha promoter: a potential growth-stimulatory role for p53. Mol Cell Biol, 1995. 15(9): p. 4694-701. 84.Buckbinder, L., et al., Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature, 1995. 377(6550): p. 646-9. 85.Zhan, Q., et al., The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol, 1994. 14(4): p. 2361-71. 86.Stewart, N., et al., Evidence for a second cell cycle block at G2/M by p53. Oncogene, 1995. 10(1): p. 109-15. 87.Guillouf, C., et al., p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene, 1995. 10(11): p. 2263-70. 88.Powell, S.N., et al., Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res, 1995. 55(8): p. 1643-8. 89.Cross, S.M., et al., A p53-dependent mouse spindle checkpoint. Science, 1995. 267(5202): p. 1353-6. 90.Agarwal, M.L., et al., p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A, 1995. 92(18): p. 8493-7. 91.el-Deiry, W.S., et al., WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res, 1994. 54(5): p. 1169-74. 92.Miyashita, T., et al., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994. 9(6): p. 1799-805. 93.Peter, M.E. and P.H. Krammer, The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ, 2003. 10(1): p. 26-35. 94.Li, L.Y., X. Luo, and X. Wang, Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 2001. 412(6842): p. 95-9. 95.Nakano, K. and K.H. Vousden, PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell, 2001. 7(3): p. 683-94. 96.Oda, E., et al., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 2000. 288(5468): p. 1053-8. 97.Sax, J.K., et al., BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol, 2002. 4(11): p. 842-9. 98.Muller, M., et al., p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med, 1998. 188(11): p. 2033-45. 99.Wu, G.S., et al., KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet, 1997. 17(2): p. 141-3. 100.El-Deiry, W.S., The role of p53 in chemosensitivity and radiosensitivity. Oncogene, 2003. 22(47): p. 7486-95. 101.Sax, J.K. and W.S. El-Deiry, p53 downstream targets and chemosensitivity. Cell Death Differ, 2003. 10(4): p. 413-7. 102.Hamada, M., et al., The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J Cancer Res Clin Oncol, 1996. 122(6): p. 360-5. 103.Pritchard, D.M., et al., Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc Natl Acad Sci U S A, 1997. 94(5): p. 1795-9. 104.Bunz, F., et al., Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest, 1999. 104(3): p. 263-9. 105.Wang, W. and W.S. El-Deiry, Restoration of p53 to limit tumor growth. Curr Opin Oncol, 2008. 20(1): p. 90-6. 106.Wang, S. and W.S. El-Deiry, The p53 pathway: targets for the development of novel cancer therapeutics. Cancer Treat Res, 2004. 119: p. 175-87. 107.Benard, J., S. Douc-Rasy, and J.C. Ahomadegbe, TP53 family members and human cancers. Hum Mutat, 2003. 21(3): p. 182-91. 108.Markowitz, S.D. and M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009. 361(25): p. 2449-60. 109.Pommier, Y., et al., DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 17(5): p. 421-33. 110.Diasio, R.B. and B.E. Harris, Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet, 1989. 16(4): p. 215-37. 111.Takeiri, A., et al., Molecular characterization of mitomycin C-induced large deletions and tandem-base substitutions in the bone marrow of gpt delta transgenic mice. Chem Res Toxicol, 2003. 16(2): p. 171-9. 112.Tzeng, S.L., et al., Physiological and functional interactions between Tcf4 and Daxx in colon cancer cells. J Biol Chem, 2006. 281(22): p. 15405-11.
|