(3.236.122.9) 您好!臺灣時間:2021/05/09 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高逢辰
研究生(外文):Feng-Chen
論文名稱:以微創經皮鋼板內固定術治療股骨遠端骨折:動力髁螺釘(DCS)與微創內固定系統(LISS)之比較
論文名稱(外文):Treatment of Distal Femoral Fracture by Minimally Invasive Percutaneous Plate Osteosynthesis: Comparison between the Dynamic Condylar Screw (DCS) and the Less Invasive Stabilization System (LISS)
指導教授:周明智周明智引用關係
學位類別:博士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:62
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的:以非直接於骨折碎片上施行之經皮鋼板內固定術來治療股骨遠端骨折可有良好之臨床預後。傳統經皮鋼板內固定術通常使用動力髁螺釘(dynamic condylar screw,簡稱DCS)及微創骨折內固定系統(Less Invasive Stabilization System,簡稱LISS)來執行。生物力學研究顯示LISS,系統具備較高負荷載重能力。但目前並無研究針對以DCS與LISS系統治療股骨遠端骨折之差異做比較。本研究之研究目的即在概述以DCS及LISS治療股骨遠端骨折之所有臨床及影像結果差異。
研究方法及資料:本研究以無使用骨植入體之DCS或LISS方法執行45例微創經皮鋼板內固定術來治療股骨髁上或髁間骨折。有26位病人26例骨折以動力髁螺釘治療,為DCS組;19位病人19例骨折以微創骨折內固定系統治療,為LISS組。我們針對此兩種不同固定裝置之臨床及影像結果資料進行比較。
研究結果:45例中有41例達到完全癒合(91.1%),DCS組之成功率為96.2%,LISS組為94.7%(P = 0.672);DCS組之平均融合時間為19.18週,LISS組為19.38週(P = 0.835);DCS組之膝關節平均活動範圍(range of motion,簡稱ROM)為111.65度,LISS組為116.26度(p=0.334)。早期植體失敗只發生在DCS組(11.5%,p=0.252,勝算比=1.826 [95% CI:1.387~2.404])。DCS組之併發症總發生率為15.4%,LISS組為15.8%(P=0.641);DCS組之平均骨折冠狀面活動損失角度為-0.77度,LISS組為-0.19度(P=0.125)。
結論與建議:以DCS或LISS施行微創經皮鋼板內固定術治療股骨遠端骨折皆能達到良好且併發症少之預後。兩者皆能使軟組織受到最低創傷。但微創骨折內固定系統(LISS)比動力髁螺釘(DCS)有較低之早期置入鬆脫風險。


Background: Treatment of distal femoral fractures by percutaneous plating without direct manipulation of the fracture fragments leads to good clinical outcome. Percutaneous plating has traditionally involved using a dynamic condylar screw (DCS) and the less invasive stabilization system (LISS) was reported. The biomechanical study showed that the LISS had the enhanced ability to withstand higher loads. However, there were no clinical comparison study of distal femoral fractures treated with DCS and LISS. The aim of this study was to outline any differences in clinical and radiological results between the DCS and the LISS for treating distal femoral fractures.
Methods: Forty-five supracondylar or intercondylar femoral fractures were treated by minimally invasive percutaneous plating with the DCS or the LISSwithout bone graft. There were 26 patients with 26 fractures in the DCS group and 19 patients with 19 fractures in the LISS group. The data of the clinical and radiographic outcomes were compared between the two different fixation devices.
Results: Complete union was achieved in 41 of the 45 patients (91.1%). The success rate was 96.2% in the DCS group and 94.7% in the LISS group (p = 0.672). The mean fusion time was 19.18 weeks in the DCS group and 19.38 weeks in the LISS group (p = 0.835). The average range of motion of the knee joint was 111.65 degrees in the DCS group and 116.26 degrees in the LISS group (p = 0.334). Early implant failure only occurred in the DCS group (11.5%, p = 0.252, odds ratio =1.826 [95% CI: 1.387–2.404]). The total complication rate was 15.4% in the DCS group and 15.8% in the LISS group (p = 0.641). The mean loss of coronal fracture fragment angle was -0.77 degrees in the DCS group and -0.19 degrees in the LISS group (p =0.125).
Conclusion: Minimally invasive percutaneous plating with the DCS or the LISS provides good outcome with few complications in the treatment of distal femoral fractures. Both systems minimize soft tissue trauma. LISS has lower risk of early implant loosening than the DCS.


第一章 緒論
第一節 研究背景與動機---------------------------------------1
第二節 研究目的--------------------------------------------2
第二章 文獻回顧
第一節 股骨
第一.一 股骨解剖--------------------------------------------3
第一.二 股骨解剖部位-----------------------------------------3
第二節 骨板內固定術之演變
第二.一 骨板固定術之歷史與演變---------------------------------6第二.二 穩定骨折與血管斷裂------------------------------------9
第二.三 鎖定骨板-------------------------------------------10第二.四 鎖定骨板與接骨系統-----------------------------------15
第二.五 以LISS治療股骨骨折----------------------------------17
第三章 病人與方法
第一節 病患收集及骨折分類-----------------------------------21
第二節 研究所使用手術方法-----------------------------------23
第三節 術後照護-------------------------------------------28
第四章 研究結果-------------------------------------------- 33
第五章 討論與建議 -------------------------------------------38
第六章 參考文獻-------------------------------------------- 42
附錄:Protocol ( Flow chart ) of decision process----------56



圖表說明
圖1:鎖定骨板 ( A ) 。一般骨板 (B)--------------------------10
圖2 : 微創內固定系統(LISS)骨板----------------------------- 12
圖3:動力髁螺釘(DCS)骨板------------------------------------13
圖4:微創內固定系統(LISS)骨板與導引系統-----------------------15
圖5 : 微創內固定系統(LISS)骨板及鋼釘-------------------------16
圖6:一名68歲男性之AO/OTA C2型股骨髁上骨折(A和B)。此骨折以DCS微創經皮鋼板治療(C和D)。治療後骨折癒合(E和F)且膝關節活動度令人滿意(G和H)。--------------------------24
圖7:一名37歲女性之AO/OTA C2型股骨髁上骨折。此骨折以DCS微創經皮鋼板治療(A)。術後約三個月於病患部分承重後,因近端螺釘鬆動而造成植入體破裂(B)。--------------------------------- 30
圖8:一名50歲女性之AO/OTA A3型股骨髁上骨折(A和B)。此骨折以LISS微創經皮鋼板治療(C和D)。骨折復原狀況良好,骨位排列整齊(E和F)。------28
圖9:一名68歲女姓之AO/OTA C2型股骨髁上骨折。此骨折以LISS微創經皮鋼板治療(A)。於術後約一年發生近端螺絲鬆動(B)。---------------------31
圖10:冠狀骨折碎片角度。--------------------------------------29

表 1病患基本資料及特點------------------------------------22
表 2使用 Neer criteria 評估臨床結果-----------------------34
表 3術後併發症--------------------------------------------35
表 4手術X光的結果----------------------------------------36
附表一: 遠端股骨骨折AO分類--------------------------------57
附表二: 修定過之Neer標準-------------------------------------58
對照表-----------------------------------------------------60


1. Giles JB, DeLee JC, Heckman JD, Keever JE. Supracondylar intercondylar fractures of the femur treated with a supracondylar plate and lag screw. J Bone Joint Surg Am. 1982;64:864-870.
2. Neer CS II, Grantham SA, Shelton ML. Supracondylar fracture of the adult femur: a study of one hundred and ten cases. J Bone Joint Surg Am. 1967;49:591-613.
3. Olerud S. Operative treatment of supracondylar-condylar fractures of the femur: technique and results in fifteen cases. J Bone Joint Surg Am. 1972;54:1015-1032.
4. Schatzker J, Lambert DC. Supracondylar fractures of the femur. Clin orthop. 1979;138:77-83.
5. Kregor PJ, Zlowodzki M. Distal femur fractures. Surgical Treatment of Orthopaedic Trauma. 2007;633-663.
6. Farouk O, krettek C, Miclau T, Schandelmaier P, Tscherne H. Effects of percutaneous and conventional plating techniques on the blood supply to the femur. Arch Orthop Trauma Surg. 1998;117:438-441.
7. Farouk O, krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H. Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999;13:401-406.
8. Krettek C, Schandelmaier P, Miclau T, Tscherne H. Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures. Injury. 1997;28(suppl 1):A20-A30.
9. Krettek C, Schandelmaier P, Miclau T, Bertram R, Holmes W, Tscherne H. Transarticular joint reconstruction and indirect plate osteosynthesis for complex distal supracondylar femoral fractures. Injury. 1997;28(suppl1):A31-A41.
10. Leunig M, Hertel R, Siebenrock KA, Ballmer FT, Mast JW, Ganz R. The evolution of indirect reduction techniques for the treatment of fractures. Clin Orthop. 2000;375:7-14.
11. Oh CW, Kyung HS, Park IH, Kim PT, Ihn JC. Distal tibia metaphyseal fractures treated by percutaneous plate osteosynthesis. Clin Orthop. 2003;408:286-291.
12. Perren SM. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation – choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84:1093-1110.
13. Wiss DA. What’s new in orthopaedic trauma. J Bone Joint Surg Am. 2001;83:1762-1772.
14. Jeon IH, Oh CW, Kim SJ, Park BC, Kyung HS, Ihn JC. Minimally invasive percutaneous plating of distal femoral fractures using the dynamic condylar screw. J Trauma. 2004;57:1048-1052.
15. Lucas SE, Seligson D, Henry SL. Intramedullary supracondylar nailing of femoral fractures: a preliminary report of the GSH supracondylar nail. Clin Orthop Relat Res. 1993;296:200-206.
16. Lannacone WM, Bennett FS, Delong WG Jr, Born CT, Dalsey RM. Initial experience with the treatment of supracondylar femoral fractures using the supracondylar intramedullary nail: a preliminary report. J Orthop Trauma. 1994;8:322-327.
17. Gellman RE, Paiement GD, Green HD, Coughlin RR. Treatment of supracondylar femoral fractures with a retrograde intramedullary nail. Clin Orthop Relat Res. 1996;332:90-97.
18. Janzing HM, Stockman B, Van Damme G, Rommens P, Broos PL. The retrograde intramedullary nail: prospective experience in patients older than sixty-five years. J Orthop Trauma. 1998;12:330-333.
19. Janzing HM, Stockman B, Van Damme G, Rommens P, Broos PL. The retrograde intramedullary nail: an alternative in the treatment of distal femoral fractures in the elderly? Arch Orthop Trauma Surg. 1998;118:92-95.
20. Danziger MB, Caucci D, Zecher SB, Segal D, Covall DJ. Treatment of intercondylar and supracondylar distal femur fractures using the GSH supracondylar nail. Am J Orthop. 1995;24:684-690.
21. Gynning JB, Hansen D. Treatment of distal femoral fractures with intramedullary supracondylar nails in elderly patients. Injury. 1999;30:43-46.
22. Ostermann PA, Hahn MP, Ekkernkamp A, David A, Muhr G. Retrograde interlocking nailing of distal femoral fractures with the intramedullary supracondylar nail [in German]. Chirug. 1996;67:1135-1140.
23. Kregor PJ, Stannard JA, Zlowodzki M, Cole PA. Treatment of distal femur fractures using the less invasive stabilization system: surgical experience and early clinical results in 103 fractures. J Orthop Trauma. 2004;18:509-520.
24. Schutz M, Muller M, Regazzoni P, Hontzsch D, Krettek C, Werken CV, Haas N. Use of the less invasive stabilization system (LISS) in patients with distal femoal (AO33) fractures: a prospective multicenter study. Arch Orthop Trauma Surg. 2005;125:102-108.
25. Fankhauser F, Gruber G, Schippinger G, et al. Minimal-invasive treatment of distal femoral fractures with the LISS (Less Invasive Stabilization System): a prospective study of 30 fractures with a follow-up of 20 months. Acta Orthop Scand. 2004;75:56-60.
26. Markmiller M, Konrad G, Sudkamp N. Femur-LISS and distal femoral nail for fixation of distal femoral fractures: are there differences in outcome and complication? Clin Orthop Relat Res. 20004;426:252-257.
27. Weight M, Collinge C. Early results of the less invasive stabilization system for mechanically unstable fractures of the distal femur (AO/OTA types A2, A3, C2, and C3). J Orthop Trauma. 2004;18:503-508.
28. Syed AA, Agarwal M, Giannoudis PV, Matthews SJ, Smith RM. Distal femoral fractures: long-term outcome following stabilization with the LISS. Injury. 2004;35:599-607.
29. Ricci AR, Yue JJ, Taffer R, Gatalano JB, De Falco RA, Wilkens KJ. Less Invasive Stabilization System for treatment of distal femur fractures. Am J Orthop .2004;33:250-255.
30. Kregor PJ, Stannard JA, Zlowodzki M, Cole PA, Alonso J. Distal femoral fracture fixation utilizing the Less Invasive Stabilization System (L.I.S.S): the technique and early results. Injury. 2001;32(Suppl 3):SC32-SC47.
31. Schutz M, Muller M, Krettek C, et al. Minimally invasive fracture stabilization of distal femoral fractures with the LISS: a prospective multicenter study. Results of a clinical study with special emphasis on difficult cases. Injury. 2001;32:SC48-SC54.
32. Wong MK, Leung F, Chow SP. Treatment of distal femoral fractures in the elderly using a less-invasive plating technique. Int Orthop. 2005;29:117-120.
33. Kregor PJ, Hughes JL, Cole PA. Fixation of distal femorla fractures above total knee arthroplasty utilizing the Less Invasive Stabilization System (L.I.S.S). Injury. 2001;32(Suppl 3):SC64-SC75.
34. Marti A, Fankhauser C, Frenk A, Cordey J, Gasser B. Biomechanical evaluation of the less invasive stabilization system for the internal fixation of distal femur fractures. J Orthop Trauma. 2001;15:482-487.
35. O’Brien PJ, Meek RN, Blachut PA, Broekhuyse HM. Fractures of the distal femur. Fractures in adults; Rockwood and Green’s. 2006;1916-1917.
36. http://www.wheelessonline.com/ortho/anatomy_of_femur.
37.http://books.google.com.tw/books?id=ctMRLv6oA8wC&pg=PA255&lpg=PA255&dq=%22+femur+anatomy&source=bl&ots=QdLRvsIFS3&sig=NxNiyxQ-YKW_k_aVMw7SoHUSEBk&hl=zh-TW&ei=prCZS93oDtegkQWQ9uXJCA&sa=X&oi=book_result&ct=result&resnum=7&ved=0CCgQ6AEwBjgU#v=onepage&q=%22%20femur%20anato my&f=false.
38. Matityahu A, Krettek C, Miclau T III. Evolving concepts in plate fixation. Surgical Treatment of Orthopaedic Trauma. 2007;58-68.
39. Gray RN. Disability and cost of industrial fractures. J Bone Joint Surg. 1928;10:27-38.
40. Bagby GW, Janes JW. The effect of compression on rate of fracture healing using a special plate. Am J Surg. 1958;95:761-771.
41. Muller M, Allgower M, Willenegger H. Manual of internal fixation. 3rd ed.Berlin: Springer-Verlag; 1991.
42. Muller ME. Principes d’osteosyntheses. Helv Chir Acta. 1961;28:196-206.
43. Muller ME, Allgower M, Willenegger H. Tecknik der operativen Frakturenbehandlung. Berlin: Springer; 1963.
44. Perren SM, Russenberger M, Steinemann S, Muller M, Allgower M. A dynamic compression plate. Acta Orthop Scand Suppl. 1969;125:31-41.
45. Allgower M, Ehrsam R, Ganz R, Matter P, Perren SM. Clinical experience would add new compression plate’DCP’. Acta Orthop Scand Suppl. 1969;125:45-61.
46. Wagner M. General principles for the clinical use of the LCP. Injury. 2003;34 (Suppl 2):B31-B42.
47. Eggers GW. The influence of the contact-compression factor on osteogenesis in surgical fractures. J Bone Joint Surg Am. 1949;31A:693-716.
48. Perren SM. The concept of biological plate using a limited contact dynamic compression plate (LC-DCP):scientific background, design and application. Injury. 1991;22(Suppl 1):1-41.
49. Teptic S, Perren SM. The biomechanics of the PC-Fix internal fixator. Injury. 1995;(Suppl 2):5-10.
50. Perren SM, Cordey J, Rahn BA, Gautier E, Schneider E. Early temporary porosis of bone induced by internal fixation implants: a reaction to necrosis, not to stress protection? Clin Orthop Relat Res. 1988;232:139-151.
51. Granowski R, Ramotowski W, Kaminski E, Pilawski K. “Zespol”-a new type of osteosynthesis, I: An internal self-compressing stabilizer of bone fragments [in Polish]. Chir Narzadow Ruchu Ortop Pol. 1984;49:301-305.
52. Ramotowski W, Granowski R. Zespol. An original method of stable osteosynthesis. Clin Orthop Relat Res. 1991;272:67-75.
53. Brunner C, Weber B. Besondere Osteosynthesetechniken. New York:Springer; 1981.
54. Heitemeyer U, Hierholzer G. Die uberbruckende Osteosynthese bei geschlossennen Stuckfrakturen des Femurschftes. Aktuelle Tramotol. 1985;15:205-209.
55. Perren SM, Klaue K, Pohler O, Predieri M, Steinemann S, Gautier E. The limited contact dynamic compression plate (LC-DCP). Arch Orthop Trauma Surg. 1990;109:304-310.
56. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP): scientific background, design and application. Injury. 1991;22:1-41.
57. Tepic S, Remiger AR, Morikawa K, Predieri M, Perren SM. Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma. 1997;11:14-23.
58. Miclau T, Remiger A, Tepic S, Lindsey R, Mclff T. A mechanical comparison of the dynamic compression plate, limited contact-dynamic compression plate, and point contact fixator. J Orthop Trauma. 1995;9:17-22.
59. Eijer H, Hauke C, Arens S, Printzen G, Schlegel U, Perren SM. PC-Fix and local infection resistance: influence of implant design on postoperative infection development, clinical and experimental results. Injury. 2001;32(Suppl 2):B38-B43.
60. Fernandez Dell’ Oca AA, Galante RM. Osteosynthesis of diaphyseal fractures of the radius and ulna using an internal fixator (PC-Fix): a prospective study. Injury. 2001;32(Suppl 2):B44-B50.
61. Johansson A, Lindgren JU, Nord CE, Svensson O. Material and design in haematogenous implant-associated infections in a rabbit model. Injury. 1999;30:651-657.
62. Borgeaud M, Cordey J, Leyvraz PE, Perren SM. Mechanical analysis of the bone to plate interface of the LC-DCP and of the PC-FIX on human femora. Injury. 2003;31(Suppl 3):C29-C36.
63. Koval KJ, Hoehl JJ, Kummer FJ, Simon JA. Distal femoral fixation: a biomechanical comparison of the standard condylar buttress plate, a locked buttress plate, and the 95-degree blade palte. J Orthop Trauma 1997;11:521-524.
64. Goesling T, Frenk A, Appenzeller A, Garapati R, Marti A, Krettek C. LISS PLT: design, mechanical and biomechanical characteristics. Injury. 2003;34(Suppl 1):A11-A15.
65. Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS. Biomechanical testing of the LCP: how can stability in locked internal fixators be controlled? Injury. 2003;34(Suppl 2):B11-B19.
66. Mast J, Jakob R, Ganz R. Planning and reduction technique in fracture surgery. New York: Springer; 1989.
67. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg. 1990;109:295-303.
68. Bolhofner BR, Carmen B, Clifford P. The results of open reduction and internal fixation of distal femur fractures using a biologic (indirect) reduction technique. J Orthop Trauma. 1996;10:372-377.
69.Ostrum R, Geel C. Indirect reduction and internal fixation of supracondylar femur fractures without bone graft. J Orthop Trauma. 1995;9:278-284.
70. Krettek C, Gerich T, Miclau T. A minimally invasive medial approach for proximal tibial fractures. Injury. 2001;32(suppl1):SA4-13.
71. Helfet DL, Shonnard PY, Levine D, Borrelli J Jr. Minimally invasive plate osteosynthesis of distal fractures of the tibia. Injury. 1997;28(suppl1):A42-A48.
72. Schandelmaier P, et al. Stabilization of distal femoral fractures using the LISS. Tech Orthop. 1999;14:230-246.
73.Osada D, Viegas SF, Shah MA, Morris RP, Patterson RM. Compasrison of different distal radius dorsal and volar fracture fixation plates: a biomechanical study. J Hand Surg [Am]. 2003;28:94-104.
74. Muller ME, Allgower M, Schneider R, Willenegger H. Manual of Internal Fixation. 3rd ed. New York: Springer-Verlag; 1995.
75. Krettek C, Miclau T, Grun O,et al. Intraoperative control of axis, rotation and length in femoral and tibial fractures- technical note. Injury. 1998;29(Suppl 3):29-39.
76. Gebhard F, Kinzl L. Femur, distal. AO Principles of Fracture Management. 2nd expanded ed. 2007:786-799.
77. Struhl S, Szporn MN, Cobelli NJ, Sadler AH. Cemented internal fixation for supracondylar femur fractures in osteoporotic patients. Journal of Orthopaedic Trauma. 1990;4(2): 151-157.
78. Rozbruch SR, Muller U, Gautier E, et al. The evoluation of femoral shaft plating technique. Clin Orthop. 1998;354:195-208.
79. Wenda K, Runkel M, Degreif J. et al. Minimally invasive plate fixation in femoral shaft fractures. Injury. 1997;28(suppl 1):13-19.
80. Claes L, Heitemeyer U, Krischak G, et al. Fixation technique influences osteogenesis of comminuted fractures. Clin Orthop. 1999;365:221-229.
81. Schandelmier P, Stephan C, Krettek C, Tscherne H. Distal femurfrakturen. Unfallchirurg. 2000;103:428-436.
82. Schatzker J, Horme G, Waddell J: The Toronto experience with the supracondylar fracture of the femur, 1966-72. Injury 1974; 6:113-128.
83. Zlowodzki M, Williamson S, Zardiackas LD, Kregor PJ. Biomechanical evaluation of the less invasive stabilization system and the 95-degree angled blade plate for the internal fixation of distal femur fractures in human cadaveric bones with high bone mineral density. J Trauma. 2006;60:836-840.
84. Hamilton P, Doig S, Williamson O. Technical difficulty of metal removal after LISS plating. Injury. 2004;35:626-628.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔